1. Guía de Atención Clínica Integral del Paciente con Dengue. Available at
  2. Number of Reported Cases of Dengue and Dengue Hemorrhagic Fever (DHF) in the Americas, by Country. Available at
  3. Online PRISM documentation. Available at
  4. S. Arboleda, O.N. Jaramillo & A.T. Peterson (2012): Spatial and temporal dynamics of Aedes aegypti breeding sites in Bello, Colombia. Journal of Vector Ecology 37(1), pp. 37–48, doi:10.1111/j.1948-7134.2012.00198.x.
  5. Sair Arboleda, Nicolas Jaramillo O. & A. Townsend Peterson (2009): Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburrá Valley, Colombia. International Journal of Environmental Research and Public Health 6(12), pp. 3040, doi:10.3390/ijerph6123040.
  6. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo & G. Pardini (2011): Spatial Calculus of Looping Sequences. Theoretical Computer Science 412(43), pp. 5976–6001, doi:10.1016/j.tcs.2011.01.020.
  7. Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo & Angelo Troina (2006): A Calculus of Looping Sequences for Modelling Microbiological Systems. Fundamenta Informaticae 72(1-3), pp. 21–35.
  8. Thomas Anung Basuki, Antonio Cerone, Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo & Elisabetta Rossi (2010): Modelling the Dynamics of an Aedes albopictus Population. In: Proceedings of AMCA-POP'10, EPTCS 33, pp. 18–36, doi:10.4204/EPTCS.33.2.
  9. D. Besozzi, P. Cazzaniga, D. Pescini & G. Mauri (2008): Modelling metapopulations with stochastic membrane systems. BioSystems 91(3), pp. 499–514, doi:10.1016/j.biosystems.2006.12.011.
  10. S. Bratt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, J. M. Drake, J. S. Brownstein, A. G. Hoen, Osman Sankoh, Monica F. Myers, Dylan B. George, Thomas Jaenisch, G. R. William Wint, Cameron P. Simmons, Thomas W. Scott, Jeremy J. Farrar & Simon I. Hay (2013): The global distribution and burden of dengue. Nature 496, pp. 504–507, doi:10.1038/nature12060.
  11. Qiuwen Chen, Fei Ye & Weifeng Li (2009): Cellular-automata-based ecological and ecohydraulics modelling. Journal of Hydroinformatics 11(3/4), pp. 252–272, doi:10.2166/hydro.2009.026.
  12. Frédéric Didier, Thomas A. Henzinger, Maria Mateescu & Verena Wolf (2010): SABRE: A Tool for Stochastic Analysis of Biochemical Reaction Networks. CoRR abs/1005.2819, doi:10.1109/QEST.2010.33.
  13. Peter Drábik, Andrea Maggiolo-Schettini & Paolo Milazzo (2011): Modular Verification of Interactive Systems with an Application to Biology. Scientific Annals of Computer Science 21(1), pp. 39–72, doi:10.1016/j.entcs.2010.12.006.
  14. S. C. Fu & G. Milne (2004): A Flexible Automata Model for Disease Simulation. In: Proceedings of ACRI'04, LNCS 3305. Springer, pp. 642–649, doi:10.1007/978-3-540-30479-1_66.
  15. Ronald L. Graham, Donald E. Knuth & Oren Patashnik (1994): Concrete Mathematics: A Foundation for Computer Science, 2nd edition. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, doi:10.1063/1.4822863.
  16. Jane Hillston, Mirco Tribastone & Stephen Gilmore (2012): Stochastic Process Algebras: From Individuals to Populations. Computing Journal 55(7), pp. 866–881, doi:10.1093/comjnl/bxr094.
  17. Jetty Kleijn, Maciej Koutny & Grzegorz Rozenberg (2011): Petri Nets for Biologically Motivated Computing. Scientific Annals of Computer Science 21(2), pp. 199–225.
  18. Thomas Kurtz (1970): Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes. Journal of Applied Probability 7(1), doi:10.2307/3212147.
  19. C. McCaig, R. Norman & C. Shankland (2008): Process Algebra Models of Population Dynamics. In: Proceedings of AB'08, LNCS 5147. Springer, pp. 139–155, doi:10.1007/978-3-540-85101-1_11.
  20. Chris McCaig, Rachel Norman & Carron Shankland (2011): From individuals to populations: A mean field semantics for process algebra. Theoretical Computer Science 412(17), pp. 1557–1580, doi:10.1016/j.tcs.2010.09.024.
  21. M. Solari H.G. Otero (2010): Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Mathematical Biosciences 223(1), pp. 32–46, doi:10.1016/j.mbs.2009.10.005.
  22. Jorge Pérez & Camilo Rueda (2008): Non-determinism and Probabilities in Timed Concurrent Constraint Programming. In: Proceedings of ICLP'08, LNCS 5366, pp. 677–681, doi:10.1007/978-3-540-89982-2_56.
  23. Anna Philippou & Mauricio Toro (2013): Process Ordering in a Process Calculus for Spatially-Explicit Ecological Models.. In: Proceedings of MOKMASD'13, LNCS 8368. Springer, pp. 345–361, doi:10.1007/978-3-319-05032-4_25.
  24. Anna Philippou, Mauricio Toro & Margarita Antonaki (2013): Simulation and Verification for a Process Calculus for Spatially-Explicit Ecological Models. Scientific Annals of Computer Science 23(1), pp. 119–167, doi:10.7561/SACS.2013.1.119.
  25. G. Michele Pinna & Andrea Saba (2008): An Event Based Semantics of P Systems. Scientific Annals of Computer Science 18, pp. 99–127.
  26. Martin L. Puterman (1994): Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edition. John Wiley & Sons, Inc., New York, NY, USA, doi:10.1002/9780470316887.
  27. Neda Saeedloei & Gopal Gupta (2014): Timed PI Calculus. In: Martín Abadi & Alberto Lluch Lafuente: Trustworthy Global Computing, Lecture Notes in Computer Science 8358. Springer International Publishing, pp. 119–135, doi:10.1007/978-3-319-05119-2_8.
  28. D. J. T. Sumpter, G. B. Blanchard & D. S. Broomhear (2001): Ants and Agents: a Process Algebra Approach to Modelling Ant Colony Behaviour. Bulletin of Mathematical Biology 63, pp. 951–980, doi:10.1006/bulm.2001.0252.
  29. Chris Tofts (1994): Processes with probabilities, priority and time. Formal Aspects of Computing 6(5), pp. 536–564, doi:10.1007/BF01211867.
  30. Mauricio Toro, Anna Philippou, Sair Arboleda, Carlos Vélez & María Puerta (2015): Mean-field semantics for a Process Calculus for Spatially-Explicit Ecological Models. Technical Report. Department of Informatics and Systems, Universidad Eafit. Available at
  31. Mauricio Toro, Anna Philippou, Christina Kassara & Spyros Sfenthourakis (2014): Synchronous Parallel Composition in a Process Calculus for Ecological Models. In: Proceedings of ICTAC'14, pp. 424–441, doi:10.1007/978-3-319-10882-7_25.
  32. Mirco Tribastone, Stephen Gilmore & Jane Hillston (2012): Scalable Differential Analysis of Process Algebra Models. IEEE Transactions on Software Engineering 38(1), pp. 205–219, doi:10.1109/TSE.2010.82.
  33. Hyun Mo Yang & Cláudia Pio Ferreira (2008): Assessing the efects of vector control on dengue transmission. Applied Mathematics and Computation 198, pp. 401–413, doi:10.1016/j.amc.2007.08.046.

Comments and questions to:
For website issues: