1. Patrick Baillot (2015): On the expressivity of elementary linear logic: Characterizing Ptime and an exponential time hierarchy. Information and Computation 241, pp. 3–31, doi:10.1016/j.ic.2014.10.005.
  2. Patrick Baillot, Erika De Benedetti & Simona Ronchi Della Rocca (2018): Characterizing polynomial and exponential complexity classes in elementary lambda-calculus. Information and Computation 261, pp. 55–77, doi:10.1016/j.ic.2018.05.005.
  3. Patrick Baillot & Alexis Ghyselen (2018): Combining Linear Logic and Size Types for Implicit Complexity. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018), pp. 9:1–9:21, doi:10.4230/LIPIcs.CSL.2018.9.
  4. Alberto Carraro & Giulio Guerrieri (2014): A Semantical and Operational Account of Call-by-Value Solvability. In: Foundations of Software Science and Computation Structures (FoSSaCS'14), pp. 103–118, doi:10.1007/978-3-642-54830-7_7.
  5. Ugo Dal Lago & Patrick Baillot (2006): On light logics, uniform encodings and polynomial time. Mathematical Structures in Computer Science 16(4), pp. 713–733, doi:10.1017/S0960129506005421.
  6. Vincent Danos & Jean-Baptiste Joinet (2003): Linear logic and elementary time. Information and Computation 183(1), pp. 123–137, doi:10.1016/S0890-5401(03)00010-5.
  7. Simona Ronchi Della Rocca, Ugo Dal Lago & Paolo Coppola (2008): Light Logics and the Call-by-Value Lambda Calculus. Logical Methods in Computer Science Volume 4, Issue 4, doi:10.2168/LMCS-4(4:5)2008.
  8. Emmanuel Filiot & Pierre-Alain Reynier (2016): Transducers, Logic and Algebra for Functions of Finite Words. ACM SIGLOG News 3(3), pp. 4–19, doi:10.1145/2984450.2984453.
  9. Jean-Yves Girard (1998): Light Linear Logic. Information and Computation 143(2), pp. 175–204, doi:10.1006/inco.1998.2700.
  10. Charles Grellois (2016): Semantics of linear logic and higher-order model-checking. Université Denis Diderot Paris 7. Available at
  11. Charles Grellois & Paul-André Melliès (2015): Finitary Semantics of Linear Logic and Higher-Order Model-Checking. In: Mathematical Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, pp. 256–268, doi:10.1007/978-3-662-48057-1_20.
  12. Giulio Guerrieri & Giulio Manzonetto (2019): The Bang Calculus and the Two Girard's Translations. Electronic Proceedings in Theoretical Computer Science 292, pp. 15–30, doi:10.4204/EPTCS.292.2.
  13. Gerd G. Hillebrand (1994): Finite Model Theory in the Simply Typed Lambda Calculus. Brown University, Providence, RI, USA.
  14. Gerd G. Hillebrand & Paris C. Kanellakis (1996): On the Expressive Power of Simply Typed and Let-Polymorphic Lambda Calculi. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society, pp. 253–263, doi:10.1109/LICS.1996.561337.
  15. Lê Thành D~ung Nguy~ên (2019): Around finite second-order coherence spaces. CoRR abs/1902.00196.
  16. Lê Thành D~ung Nguy~ên & Pierre Pradic (2019): From normal functors to logarithmic space queries. In: 46th International Colloquium on Automata, Languages and Programming (ICALP'19), pp. 123:1–123:15, doi:10.4230/LIPIcs.ICALP.2019.123.
  17. Laurent Regnier (1994): Une équivalence sur les lambda-termes. Theoretical Computer Science 126(2), pp. 281–292, doi:10.1016/0304-3975(94)90012-4.
  18. Alex Simpson (2005): Reduction in a Linear Lambda-Calculus with Applications to Operational Semantics. In: 16th International Conference on Term Rewriting and Applications (RTA'05), pp. 219–234, doi:10.1007/978-3-540-32033-3_17.
  19. Kazushige Terui (2012): Semantic Evaluation, Intersection Types and Complexity of Simply Typed Lambda Calculus. In: 23rd International Conference on Rewriting Techniques and Applications (RTA'12), pp. 323–338, doi:10.4230/LIPIcs.RTA.2012.323.

Comments and questions to:
For website issues: