1. L. Aceto (1994): GSOS and Finite Labelled Transition Systems. Theoret. Comput. Sci. 131(1), pp. 181–195, doi:10.1016/0304-3975(94)90094-9.
  2. L. Aceto, W. Fokkink & C. Verhoef (2001): Structural Operational Semantics. In: Handbook of Process Algebra. Elsevier Science, pp. 197–292, doi:10.1016/B978-044482830-9/50021-7.
  3. J. Adámek, S. Milius & J. Velebil (2003): Free Iterative Theories: a coalgebraic view. Math. Structures Comput. Sci. 13(2), pp. 259–320, doi:10.1017/S0960129502003924.
  4. J. Adámek, S. Milius & J. Velebil (2006): Iterative algebras at work. Math. Structures Comput. Sci. 16(6), pp. 1085–1131, doi:10.1017/S0960129506005706.
  5. J. Adámek & J. Rosický (1994): Locally presentable and accessible categories. Cambridge University Press, doi:10.1017/CBO9780511600579.
  6. J. Adámek & V. Trnková (1990): Automata and Algebras in Categories. Mathematics and its Applications 37. Kluwer Academic Publishers.
  7. M. Barr (1993): Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114(2), pp. 299–315, doi:10.1016/0304-3975(93)90076-6.
  8. F. Bartels (2004): On generalised coinduction and probabilistic specification formats. CWI, Amsterdam.
  9. B. Bloom, S. Istrail & A. Meyer (1995): Bisimulation Can't be Traced. J. ACM 42(1), pp. 232–268, doi:10.1145/200836.200876.
  10. M. Bonsangue, S. Milius & A. Silva (2012): Sound and complete axiomatizations of coalgebraic language equivalence. Accepted for publication in ACM Trans. Comput. Log..
  11. B. Courcelle (1983): Fundamental properties of infinite trees. Theoret. Comput. Sci. 25, pp. 95–169, doi:10.1016/0304-3975(83)90059-2.
  12. M. Droste, W. Kuich & H. Vogler (2009): Handbook of weighted automata. Monographs in Theoretical Computer Science. Springer, doi:10.1007/978-3-642-01492-5.
  13. P. Gabriel & F. Ulmer (1971): Lokal präsentierbare Kategorien. Lecture Notes Math. 221. Springer-Verlag.
  14. S. Ginali (1979): Regular trees and the free iterative theory. J. Comput. System Sci. 18, pp. 228–242, doi:10.1016/0022-0000(79)90032-1.
  15. B. Klin (2007): Bialgebraic Operational Semantics and Modal Logic. In: Proc. of LICS 2007, pp. 336–345, doi:10.1109/LICS.2007.13.
  16. B. Klin (2009): Structural Operational Semantics for Weighted Transition Systems. In: J. Palsberg: Semantics and Algebraic Specification, LNCS 5700. Springer, pp. 121–139, doi:10.1007/978-3-642-04164-8_7.
  17. B. Klin (2011): Bialgebras for structural operational semantics: An introduction. Theoret. Comput. Sci. 412(38), pp. 5043–5069, doi:10.1016/j.tcs.2011.03.023.
  18. J. Lambek (1968): A Fixpoint Theorem for Complete Categories. Math. Z. 103, pp. 151–161, doi:10.1007/BF01110627.
  19. M. Makkai & R. Paré (1989): Accessible categories: the foundation of categorical model theory. Contemporary Math. 104. Amer. Math. Soc., Providence, RI, doi:10.1090/conm/104.
  20. S. Milius (2010): A Sound and Complete Calculus for Finite Stream Circuits. In: Proc. of LICS 2010. IEEE Computer Society, pp. 421–430, doi:10.1109/LICS.2010.11.
  21. R. Milner (1989): Communication and Concurrency. Prentice Hall.
  22. J. Rutten (2005): A coinductive calculus of streams. Math. Structures Comput. Sci. 15(1), pp. 93–147, doi:10.1017/S0960129504004517.
  23. J. Rutten (2008): Rational Streams Coalgebraically. Log. Methods Comput. Sci. 4(3:9), pp. 22 pp., doi:10.2168/LMCS-4(3:9)2008.
  24. J. Shallit (2008): A Second Course in Formal Languages and Automata Theory. Cambridge University Press, doi:10.1017/CBO9780511808876.
  25. D. Turi & G. Plotkin (1997): Towards a Mathematical Operational Semantics. In: Proc. of LICS 1997. IEEE Computer Society, pp. 280–291, doi:10.1109/LICS.1997.614955.
  26. J. Worrell (2005): On the final sequence of a finitary set functor. Theoret. Comput. Sci. 338, pp. 184–199, doi:10.1016/j.tcs.2004.12.009.

Comments and questions to:
For website issues: