1. J.C. Bradfield (1996): The modal mu-calculus alternation hierarchy is strict. In: U. Montanari & V. Sassone: CONCUR '96: Concurrency Theory, Lecture Notes in Computer Science 1119. Springer Berlin Heidelberg, pp. 233–246, doi:10.1007/3-540-61604-7_58.
  2. J.C. Bradfield & C. Stirling (2007): Modal mu-calculi. Handbook of modal logic 3, pp. 721–756, doi:10.1016/S1570-2464(07)80015-2.
  3. O. Carton & R. Maceiras (1999): Computing the Rabin index of a parity automaton. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33(6), pp. 495–505, doi:10.1051/ita:1999129. Available at
  4. T. Colcombet & C. Löding (2008): The non-deterministic Mostowski hierarchy and distance-parity automata. In: Automata, languages and programming. Springer, pp. 398–409, doi:10.1007/978-3-540-70583-3_33.
  5. G. D'Agostino & M. Hollenberg (2000): Logical Questions Concerning The mu-Calculus: Interpolation, Lyndon and Los-Tarski. J. Symb. Log. 65(1), pp. 310–332, doi:10.2307/2586539.
  6. E. A. Emerson & C. S. Jutla (1991): Tree automata, mu-calculus and determinacy. In: Foundations of Computer Science, 1991. Proceedings., 32nd Annual Symposium on. IEEE, pp. 368–377, doi:10.1109/SFCS.1991.185392.
  7. A. Facchini, F. Murlak & M. Skrzypczak (2013): Rabin-Mostowski index problem: a step beyond deterministic automata. In: Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE Computer Society, pp. 499–508, doi:10.1109/LICS.2013.56.
  8. M. Huth, J. Kuo & N. Piterman (2012): The Rabin Index of Parity Games. In: K. Eder, J. Lourenço & O. Shehory: Hardware and Software: Verification and Testing, Lecture Notes in Computer Science 7261. Springer Berlin Heidelberg, pp. 259–260, doi:10.1007/978-3-642-34188-5_25.
  9. D. Janin & I. Walukiewicz (1995): Automata for the modal μ-calculus and related results. In: Proc. MFCS '95 LNCS 969, pp. 552–562, doi:10.1007/3-540-60246-1_160.
  10. M. Jurdziński (2000): Small progress measures for solving parity games. In: STACS 2000. Springer, pp. 290–301, doi:10.1007/3-540-46541-3_24.
  11. M.K. Lehtinen & S. Quickert (2015): Deciding the first levels of the modal μ alternation hierarchy by formula construction. In: (forthcoming) Proc. CSL '15.
  12. A. Niwiński & I. Walukiewicz (2005): Deciding Nondeterministic Hierarchy of Deterministic Tree Automata. Electronic Notes in Theoretical Computer Science 123, pp. 195 – 208, doi:10.1016/j.entcs.2004.05.015. Proceedings of the 11th Workshop on Logic, Language, Information and Computation (WoLLIC 2004).
  13. D. Niwiński & I. Walukiewicz (1998): Relating hierarchies of word and tree automata. In: M. Morvan, C. Meinel & D. Krob: STACS 98, Lecture Notes in Computer Science 1373. Springer Berlin Heidelberg, pp. 320–331, doi:10.1007/BFb0028571.
  14. I. Walukiewicz (2000): Completeness of Kozen's axiomatisation of the propositional μ-calculus. Information and Computation 157(1), pp. 142–182, doi:10.1006/inco.1999.2836.

Comments and questions to:
For website issues: