1. A. Beckmann & S.R. Buss (2014): Improved Witnessing and Local Improvement Principles for Second-order Bounded Arithmetic. ACM Transactions on Computational Logic 15(1), pp. 2, doi:10.1145/2559950.
  2. G. Bonfante, A. Cichon, J.-Y. Marion & H. Touzet (2001): Algorithms with Polynomial Interpretation Termination Proof. Journal of Functional Programming 11(1), pp. 33–53, doi:10.1017/S0956796800003877.
  3. G. Bonfante, J.-Y. Marion & J.-Y. Moyen (2001): On Lexicographic Termination Ordering with Space Bound Certifications. In: Perspectives of System Informatics, Lecture Notes in Computer Science 2244, pp. 482–493, doi:10.1007/3-540-45575-2_46.
  4. G. Bonfante, J.-Y. Marion & J.-Y. Moyen (2011): Quasi-interpretations A Way to Control Resources. Theoretical Computer Science 412(25), pp. 2776–2796, doi:10.1016/j.tcs.2011.02.007.
  5. W. Buchholz (1995): Proof-theoretic Analysis of Termination Proofs. Annals of Pure and Applied Logic 75(1–2), pp. 57–65, doi:10.1016/0168-0072(94)00056-9.
  6. S.R. Buss (1986): Bounded Arithmetic. Bibliopolis, Napoli.
  7. S.R. Buss (1998): First-Order Proof Theory of Arithmetic. In: S.R. Buss: Handbook of Proof Theory. North Holland, Amsterdam, pp. 79–147, doi:10.1016/S0049-237X(98)80017-7.
  8. N. Dershowitz (1982): Orderings for Term-Rewriting Systems. Theoretical Computer Science 17, pp. 279–301, doi:10.1016/0304-3975(82)90026-3.
  9. N. Eguchi (2010): A Term-rewriting Characterization of PSPACE. In: T. Arai, C.T. Chong, R. Downey, J. Brendle, Q. Feng, H. Kikyo & H. Ono: Proceedings of the 10th Asian Logic Conference 2008. World Scientific, pp. 93–112, doi:10.1142/9789814293020_0004.
  10. D. Hofbauer (1990): Termination Proofs by Multiset Path Orderings Imply Primitive Recursive Derivation Lengths. In: Proceedings of the 2nd International Conference on Algebraic and Logic Programming, Lecture Notes in Computer Science 463, pp. 347–358, doi:10.1007/3-540-53162-9_50.
  11. N.D. Jones (1997): Computability and Complexity - from a Programming Perspective. Foundations of Computing Series. MIT Press, doi:10.1007/978-94-010-0413-8_4.
  12. N.D. Jones & A. Mycroft (1986): Data Flow Analysis of Applicative Programs Using Minimal Function Graphs. In: Proceedings of the 13th ACM Symposium on Principles of Programming Languages, pp. 296–306, doi:10.1145/512644.512672.
  13. S. Kamin & J.-J. Lévy (1980): Two Generalizations of the Recursive Path Ordering. Unpublished manuscript, University of Illinois.
  14. D. Leivant & J.-Y. Marion (1995): Ramified Recurrence and Computational Complexity II: Substitution and Poly-space. Lecture Notes in Computer Science 933, pp. 486–500, doi:10.1007/BFb0022277.
  15. J.-Y. Marion (2003): Analysing the Implicit Complexity of Programs. Information and Computation 183(1), pp. 2–18, doi:10.1016/S0890-5401(03)00011-7.
  16. I. Oitavem (2001): Implicit Characterizations of Pspace. In: Proof Theory in Computer Science, Lecture Notes in Computer Science 2183. Springer, pp. 170–190, doi:10.1007/3-540-45504-3_11.
  17. I. Oitavem (2002): A Term Rewriting Characterization of the Functions Computable in Polynomial Space. Archive for Mathematical Logic 41(1), pp. 35–47, doi:10.1007/s001530200002.
  18. W.J. Savitch (1970): Relationships Between Nondeterministic and Deterministic Tape Complexities. Journal of Computer and System Sciences 4(2), pp. 177–192, doi:10.1016/S0022-0000(70)80006-X.
  19. K. Slonneger & B.L. Kurtz (1995): Formal Syntax and Semantics of Programming Languages - A Laboratory Based Approach. Addison-Wesley.
  20. Terese (2003): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science 55. Cambridge University Press.
  21. D.B. Thompson (1972): Subrecursiveness: Machine-Independent Notions of Computability in Restricted Time and Storage. Mathematical Systems Theory 6(1), pp. 3–15, doi:10.1007/BF01706069.
  22. A. Weiermann (1995): Termination Proofs for Term Rewriting Systems by Lexicographic Path Orderings Imply Multiply Recursive Derivation Lengths. Theoretical Computer Science 139(1&2), pp. 355–362, doi:10.1016/0304-3975(94)00135-6.
  23. G. Winskel (1993): The Formal Semantics of Programming Languages - An Introduction. Foundations of Computing Series. MIT Press.

Comments and questions to:
For website issues: