1. K. Asada, S. Hidaka, H. Kato, Z. Hu & K. Nakano (2013): A parameterized graph transformation calculus for finite graphs with monadic branches. In: Proc. of PPDP '13, pp. 73–84, doi:10.1145/2505879.2505903.
  2. F. Baader & T. Nipkow (1998): Term Rewriting and All That. Cambridge University Press.
  3. S. L. Bloom & Z. Ésik (1993): Iteration Theories - The Equational Logic of Iterative Processes. EATCS Monographs on Theoretical Computer Science. Springer.
  4. S. L. Bloom & Z. Ésik (1994): Solving Polynomial Fixed Point Equations. In: Proc. of MFCS'94, LNCS 841, pp. 52–67, doi:10.1007/3-540-58338-6_58.
  5. S. L. Bloom, Z. Ésik & D. Taubner (1993): Iteration Theories of Synchronization Trees. Inf. Comput. 102(1), pp. 1–55, doi:10.1006/inco.1993.1001.
  6. P. Buneman, S. Davidson, G. Hillebrand & D. Suciu (1996): A query language and optimization techniques for unstructured data. In: Proc. of ACM-SIGMOD'96, doi:10.1145/233269.233368.
  7. P. Buneman, S. B. Davidson, M. F. Fernandez & D. Suciu (1997): Adding Structure to Unstructured Data. In: Proc. of ICDT '97, pp. 336–350, doi:10.1007/3-540-62222-5_55.
  8. P. Buneman, M. F. Fernandez & D. Suciu (2000): UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion. VLDB J. 9(1), pp. 76–110, doi:10.1007/s007780050084.
  9. R.L. Crole (1993): Categories for Types. Cambridge Mathematical Textbook.
  10. Z. Ésik (1999): Axiomatizing Iteration Categories. Acta Cybernetica 14, pp. 65–82.
  11. Z. Ésik (1999): Group Axioms for Iteration. Inf. Comput. 148(2), pp. 131–180, doi:10.1006/inco.1998.2746.
  12. Z. Ésik (2000): Axiomatizing the Least Fixed Point Operation and Binary Supremum. In: Proc. of Computer Science Logic 2000, LNCS 1862, pp. 302–316, doi:10.1007/3-540-44622-2_20.
  13. Z. Ésik (2002): Continuous Additive Algebras and Injective Simulations of Synchronization Trees. J. Log. Comput. 12(2), pp. 271–300, doi:10.1093/logcom/12.2.271.
  14. M. P. Fiore & M. D. Campos (2013): The Algebra of Directed Acyclic Graphs. In: Computation, Logic, Games, and Quantum Foundations, LNCS 7860, pp. 37–51, doi:10.1007/978-3-642-38164-5_4.
  15. M. Hasegawa (1997): Models of Sharing Graphs: A Categorical Semantics of let and letrec. University of Edinburgh. Distinguished Dissertation Series, Springer-Verlag, 1999.
  16. M. Hasegawa (1997): Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi. In: Proc. of TLCA'97, pp. 196–213, doi:10.1007/3-540-62688-3_37.
  17. S. Hidaka, K. Asada, Z. Hu, H. Kato & K. Nakano (2013): Structural recursion for querying ordered graphs. In: Proc. of ACM SIGPLAN ICFP'13, pp. 305–318, doi:10.1145/2500365.2500608.
  18. S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda & K. Nakano (2010): Bidirectionalizing graph transformations. In: Proc. of ICFP 2010, pp. 205–216, doi:10.1145/1863543.1863573.
  19. S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, K. Nakano & I. Sasano (2011): Marker-Directed Optimization of UnCAL Graph Transformations. In: Proc. of LOPSTR'11, pp. 123–138, doi:10.1007/978-3-642-32211-2_9.
  20. A. Joyal, R. Street & D. Verity (1996): Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society 119(3), pp. 447–468, doi:10.1017/S0305004100074338.
  21. S. Mac Lane (1971): Categories for the Working Mathematician. Graduate Texts in Mathematics 5. Springer-Verlag, doi:10.1007/978-1-4612-9839-7.
  22. L. G. L. T. Meertens (1992): Paramorphisms. Formal Asp. Comput. 4(5), pp. 413–424, doi:10.1007/BF01211391.
  23. R. Milner (1984): A Complete Inference System for a Class of Regular Behaviours. J. Comput. Syst. Sci. 28(3), pp. 439–466, doi:10.1016/0022-0000(84)90023-0.
  24. P. M. Sewell (1995): The Algebra of Finite State Processes. University of Edinburgh. Dept. of Computer Science technical report CST-118-95, also published as LFCS-95-328.
  25. A. K. Simpson & G. D. Plotkin (2000): Complete Axioms for Categorical Fixed-Point Operators. In: Proc. of LICS'00, pp. 30–41, doi:10.1109/LICS.2000.855753.

Comments and questions to:
For website issues: