1. D. Berwanger (2003): Game Logic is strong enough for parity games. Studia Logica 75(2), pp. 205–219, doi:10.1023/A:1027358927272.
  2. B. F. Chellas (1980): Modal Logic - An Introduction. Cambridge University Press, doi:10.1017/CBO9780511621192.
  3. C. Cîrstea (2014): A Coalgebraic Approach to Linear-Time Logics. In: A. Muscholl: Foundations of Software Science and Computation Structures - 17th International Conference, FOSSACS 2014, Proceedings, LNCS 8412. Springer, pp. 426–440, doi:10.1007/978-3-642-54830-7_28.
  4. M. J. Fischer & R. F. Ladner (1979): Propositional dynamic logic of regular programs. J. of Computer and System Sciences 18, pp. 194–211, doi:10.1016/0022-0000(79)90046-1.
  5. H. Peter Gumm (2005): From T-Coalgebras to Filter Structures and Transition Systems. In: Algebra and Coalgebra in Computer Science: First International Conference, CALCO 2005, Swansea, UK, September 3-6, 2005, Proceedings, LNCS 3629. Springer, pp. 194–212, doi:10.1007/11548133_13.
  6. H.H. Hansen, C. Kupke & R.A. Leal (2014): Strong Completeness for Iteration-Free Coalgebraic Dynamic Logics. Technical Report. ICIS, Radboud University Nijmegen. Available at See also updated version at
  7. H.H. Hansen, C. Kupke & R.A. Leal (2014): Strong completeness of iteration-free coalgebraic dynamic logics. In: J. Diaz, I. Lanese & D. Sangiorgi: Theoretical Computer Science (TCS 2014). 8th IFIP TC 1/WG 2.2 International Conference, LNCS 8705. Springer, pp. 281–295, doi:10.1007/978-3-662-44602-7_22.
  8. B. Jacobs (2015): A recipe for state-and-effect triangles. In: Algebra and Coalgebra in Computer Science: Sixth International Conference (CALCO 2015), Proceedings, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, doi:10.4230/LIPIcs.CALCO.2015.113.
  9. Bart Jacobs (2015): Dijkstra and Hoare monads in monadic computation. Theoretical Computer Science, doi:10.1016/j.tcs.2015.03.020. Article in Press.
  10. D. Kozen (1983): Results on the propositional mu-calculus. Theoretical Computer Science 27, pp. 333–354, doi:10.1016/0304-3975(82)90125-6.
  11. D. Kozen & R. Parikh (1981): An elementary proof of the completeness of PDL. Theoretical Computer Science 14, pp. 113–118, doi:10.1016/0304-3975(81)90019-0.
  12. C. Kupke & D. Pattinson (2011): Coalgebraic semantics of modal logics: an overview. Theoretical Computer Science 412(38), pp. 5070–5094, doi:10.1016/j.tcs.2011.04.023.
  13. S. MacLane (1998): Categories for the Working Mathematician, 2nd edition. Springer.
  14. R. Parikh (1985): The logic of games and its applications. In: Topics in the Theory of Computation, Annals of Discrete Mathematics 14. Elsevier, doi:10.1016/S0304-0208(08)73078-0.
  15. M. Pauly & R. Parikh (2003): Game Logic: An Overview. Studia Logica 75(2), pp. 165–182, doi:10.1023/A:1027354826364.
  16. J. J. M. M. Rutten (2000): Universal Coalgebra: A Theory of Systems. Theoretical Computer Science 249, pp. 3–80, doi:10.1016/S0304-3975(00)00056-6.
  17. L. Schröder & D. Pattinson (2009): Strong completeness of coalgebraic modal logics. In: Proceedings of STACS 2009, pp. 673–684, doi:10.4230/LIPIcs.STACS.2009.1855.
  18. Lutz Schröder (2007): A finite model construction for coalgebraic modal logic. J. Log. Algebr. Program. 73(1-2), pp. 97–110, doi:10.1016/j.jlap.2006.11.004.
  19. I. Walukiewicz (2000): Completeness of Kozen's Axiomatisation of the Propositional μLaTeX Error: Bad math environment delimiterSee the LaTeX manual or LaTeX Companion for explanation.Your command was ignored.Type I <command> <return> to replace it with another command,or <return> to continue without it.-Calculus. Inf. Comput. 157(1-2), pp. 142–182, doi:10.1006/inco.1999.2836.
  20. O. Wyler (1981): Algebraic theories of continuous lattices. In: B. Banaschewski & R.-E. Hoffman: Continuous Lattices, Lect. Notes Math. 871. Springer, Berlin, pp. 187–201, doi:10.1007/978-3-642-61598-6_11.

Comments and questions to:
For website issues: