1. M. Aoki (1968): Control of large-scale dynamic systems by aggregation. IEEE Trans. Autom. Control 13(3), pp. 246–253, doi:10.1109/TAC.1968.1098900.
  2. P. Auger, R. de la Parra, J. Poggiale, E. Sánchez & T. Nguyen-Huu (2008): Aggregation of Variables and Applications to Population Dynamics. In: Pierre Magal & Shigui Ruan: Structured Population Models in Biology and Epidemiology, Lecture Notes in Mathematics 1936. Springer, pp. 209–263, doi:10.1007/978-3-540-78273-5_5.
  3. C. Baier, B. Engelen & M. E. Majster-Cederbaum (2000): Deciding Bisimilarity and Similarity for Probabilistic Processes. J. Comput. Syst. Sci. 60(1), pp. 187–231, doi:10.1006/jcss.1999.1683.
  4. C.W. Barrett, R. Sebastiani, S.A. Seshia & C. Tinelli (2009): Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications, chapter Satisfiability Modulo Theories. IOS Press.
  5. N.M. Borisov, N.I. Markevich, J.B. Hoek & B.N. Kholodenko (2005): Signaling through Receptors and Scaffolds: Independent Interactions Reduce Combinatorial Complexity. Biophysical Journal 89(2), pp. 951–966, doi:10.1529/biophysj.105.060533.
  6. F. van Breugel & J. Worrell (2006): Approximating and computing behavioural distances in probabilistic transition systems. Theoretical Computer Science 360(1–3), pp. 373–385, doi:10.1016/j.tcs.2006.05.021.
  7. L. Cardelli, M. Tribastone, M. Tschaikowski & A. Vandin (2015): Forward and Backward Bisimulations for Chemical Reaction Networks. In: 26th International Conference on Concurrency Theory, CONCUR, pp. 226–239, doi:10.4230/LIPIcs.CONCUR.2015.226.
  8. L. Cardelli, M. Tribastone, M. Tschaikowski & A. Vandin (2016): Efficient Syntax-driven Lumping of Differential Equations. In: Proceedings of Tools and Algorithms for the Construction and Analysis of Systems — 21st International Conference (TACAS), doi:10.1007/978-3-662-49674-9_6.
  9. L. Cardelli, M. Tribastone, M. Tschaikowski & A. Vandin (2016): Symbolic computation of differential equivalences. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL, pp. 137–150, doi:10.1145/2837614.2837649.
  10. L. De Moura & N. Bjørner (2008): Z3: An Efficient SMT Solver. In: TACAS, pp. 337–340, doi:10.1007/978-3-540-78800-3_24.
  11. C. Dehnert, J.-P. Katoen & D. Parker (2013): SMT-Based Bisimulation Minimisation of Markov Models. In: R. Giacobazzi, J. Berdine & I. Mastroeni: Proc. 14th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI'13), LNCS 7737. Springer, pp. 28–47, doi:10.1007/978-3-642-35873-9_5.
  12. S. Derisavi, H. Hermanns & W.H. Sanders (2003): Optimal state-space lumping in Markov chains. Information Processing Letters 87(6), pp. 309–315, doi:10.1016/S0020-0190(03)00343-0.
  13. J. Desharnais, V. Gupta, R. Jagadeesan & P. Panangaden (2004): Metrics for labelled Markov processes. Theor. Comput. Sci. 318(3), pp. 323–354, doi:10.1016/j.tcs.2003.09.013.
  14. J. Feret, V. Danos, J. Krivine, R. Harmer & W. Fontana (2009): Internal coarse-graining of molecular systems. Proceedings of the National Academy of Sciences 106(16), pp. 6453–6458, doi:10.1073/pnas.0809908106.
  15. J. Feret, T. Henzinger, H. Koeppl & T. Petrov (2012): Lumpability abstractions of rule-based systems. Theoretical Computer Science 431, pp. 137–164, doi:10.1016/j.tcs.2011.12.059.
  16. G. Iacobelli & M. Tribastone (2013): Lumpability of fluid models with heterogeneous agent types. In: DSN, pp. 1–11, doi:10.1109/DSN.2013.6575346.
  17. N. Israeli & N. Goldenfeld (2006): Coarse-graining of cellular automata, emergence, and the predictability of complex systems. Phys. Rev. E 73, pp. 026203, doi:10.1103/PhysRevE.73.026203.
  18. Y. Iwasa, V. Andreasen & S. Levin (1987): Aggregation in model ecosystems. I. Perfect aggregation. Ecological Modelling 37(3-4), pp. 287–302, doi:10.1016/0304-3800(87)90030-5.
  19. M.Z. Kwiatkowska, G. Norman & D. Parker (2011): PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: CAV, pp. 585–591, doi:10.1007/978-3-642-22110-1_47.
  20. K.G. Larsen, R. Mardare & P. Panangaden (2012): Taking It to the Limit: Approximate Reasoning for Markov Processes. In: MFCS, pp. 681–692, doi:10.1007/978-3-642-32589-2_59.
  21. K.G. Larsen & A. Skou (1991): Bisimulation through probabilistic testing. Information and Computation 94(1), pp. 1–28, doi:10.1016/0890-5401(91)90030-6.
  22. G. Li & H. Rabitz (1989): A general analysis of exact lumping in chemical kinetics. Chemical Engineering Science 44(6), pp. 1413–1430, doi:10.1016/0009-2509(89)85014-6.
  23. J.D. Murray (2002): Mathematical Biology I: An Introduction, 3rd edition. Springer, doi:10.1007/b98868.
  24. M.S. Okino & M.L. Mavrovouniotis (1998): Simplification of Mathematical Models of Chemical Reaction Systems. Chemical Reviews 2(98), pp. 391–408, doi:10.1021/cr950223l.
  25. R. Paige & R. Tarjan (1987): Three Partition Refinement Algorithms. SIAM Journal on Computing 16(6), pp. 973–989, doi:10.1137/0216062.
  26. G.J. Pappas (2003): Bisimilar linear systems. Automatica 39(12), pp. 2035–2047, doi:10.1016/j.automatica.2003.07.003.
  27. J. Toth, G. Li, H. Rabitz & A.S. Tomlin (1997): The Effect of Lumping and Expanding on Kinetic Differential Equations. SIAM Journal on Applied Mathematics 57(6), pp. 1531–1556, doi:10.1137/S0036139995293294.
  28. M. Tribastone (2013): A Fluid Model for Layered Queueing Networks. IEEE Transactions on Software Engineering 39(6), pp. 744–756, doi:10.1109/TSE.2012.66.
  29. M. Tribastone, S. Gilmore & J. Hillston (2012): Scalable Differential Analysis of Process Algebra Models. IEEE Transactions on Software Engineering 38(1), pp. 205–219, doi:10.1109/TSE.2010.82.
  30. M. Tschaikowski & M. Tribastone (2015): Approximate reduction of heterogeneous nonlinear models with differential hulls. IEEE Transactions on Automatic Control, doi:10.1109/TAC.2015.2457172.
  31. T. Turanyi & A. Tomlin (2014): Analysis of Kinetic Reaction Mechanisms. Springer, doi:10.1007/978-3-662-44562-4.
  32. A. Valmari & G. Franceschinis (2010): Simple O(m logn) Time Markov Chain Lumping. In: TACAS, pp. 38–52, doi:10.1007/978-3-642-12002-2_4.
  33. Eberhard O. Voit (2013): Biochemical Systems Theory: A Review. ISRN Biomathematics 2013, pp. 53, doi:10.1155/2013/897658.

Comments and questions to:
For website issues: