References

  1. William W. Adams & Philippe Loustaunau (1994): An Introduction to Gröbner Bases 3. American Mathematical Society, doi:10.1090/gsm/003.
  2. Joachim Apel & Ralf Hemmecke (2005): Detecting unnecessary reductions in an involutive basis computation. Journal of Symbolic Computation 40(4), pp. 1131 – 1149, doi:10.1016/j.jsc.2004.04.004. Applications of Computer Algebra (ACA) 2001 and 2002.
  3. T. Becker, V. Weispfenning & H. Kredel (1993): Gröbner bases: a computational approach to commutative algebra. Graduate texts in mathematics. Springer-Verlag, doi:10.1007/978-1-4612-0913-3.
  4. B. Buchberger (1979): A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. In: Edward W. Ng: Symbolic and Algebraic Computation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 3–21, doi:10.1007/3-540-09519-5_52.
  5. B. Buchberger (1985): Multidimensional Systems Theory – Progress, Directions and Open Problems in Multidimensional Systems, chapter Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, pp. 184–232. Reidel Publishing Company, doi:10.1007/978-94-017-0275-1_4.
  6. B. Buchberger (1998): Introduction to Gröbner Bases. London Mathematical Society Lectures Notes Series 251. Cambridge University Press, doi:10.1017/CBO9780511565847.
  7. Bruno Buchberger (2001): Gröbner Bases: A Short Introduction for Systems Theorists. Research Institute for Symbolic Computation 2178, doi:10.1007/3-540-45654-6_1.
  8. Bruno Buchberger (2006): Bruno Buchbergers PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal of Symbolic Computation 41(3), pp. 475 – 511, doi:10.1016/j.jsc.2005.09.007. Logic, Mathematics and Computer Science: Interactions in honor of Bruno Buchberger (60th birthday).
  9. Bruno Buchberger & Manuel Kauers (2010): Gröbner Basis. Scholarpedia 5(10), doi:10.4249/scholarpedia.7763.
  10. Donal O'Shea David A. Cox, John Little (2015): Ideals, Varieties, and Algorithms, 4th edition. Springer, doi:10.1007/978-3-319-16721-3.
  11. Jean-Charles Faugère (1999): A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra 139(1), pp. 61 – 88, doi:10.1016/S0022-4049(99)00005-5.
  12. Jean Charles Faugère (2002): A New Efficient Algorithm for Computing Gröbner Bases Without Reduction to Zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC '02. ACM, New York, NY, USA, pp. 75–83, doi:10.1145/780506.780516.
  13. Vladimir P. Gerdt & Yuri A. Blinkov (1998): Involutive bases of polynomial ideals. Mathematics and Computers in Simulation 45(5), pp. 519 – 541, doi:10.1016/S0378-4754(97)00127-4.
  14. Alessandro Giovini, Teo Mora, Gianfranco Niesi, Lorenzo Robbiano & Carlo Traverso (1991): "One Sugar Cube, Please"; or Selection Strategies in the Buchberger Algorithm. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, ISSAC '91. ACM, New York, NY, USA, pp. 49–54, doi:10.1145/120694.120701.
  15. Heinz Kredel (2010): Parallel and distributed Gröbner bases computation in JAS. CoRR abs/1008.0011.
  16. Ernst W Mayr & Albert R Meyer (1982): The complexity of the word problems for commutative semigroups and polynomial ideals. Advances in Mathematics 46(3), pp. 305 – 329, doi:10.1016/0001-8708(82)90048-2.
  17. T. Mora, G.C. Rota & B. Doran (2003): Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology. Encyclopedia of Mathematics and its Applications. Cambridge University Press, doi:10.1017/CBO9781107340954.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org