1. Jakob L. Andersen, Christoph Flamm, Daniel Merkle & Peter F. Stadler (2016): A Software Package for Chemically Inspired Graph Transformation. In: Graph Transformation (ICGT 2016), LNCS 9761. Springer International Publishing, pp. 73–88, doi:10.1007/978-3-319-40530-8_5.
  2. Mayur Bapodra & Reiko Heckel (2010): From Graph Transformations to Differential Equations. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 30, doi:10.14279/tuj.eceasst.30.431.
  3. Nicolas Behr (2019): Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework. In: Workshop on Graph Computation (GCM 2019), EPTCS 309. Open Publishing Association, pp. 23–52, doi:10.4204/eptcs.309.2.
  4. Nicolas Behr, Vincent Danos & Ilias Garnier (2016): Stochastic mechanics of graph rewriting. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2016). ACM Press, doi:10.1145/2933575.2934537.
  5. Nicolas Behr, Vincent Danos & Ilias Garnier (2020): Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems. Logical Methods in Computer Science Volume 16, Issue 3. Available at
  6. Nicolas Behr & Jean Krivine (2019): Compositionality of Rewriting Rules with Conditions. Available at
  7. Nicolas Behr & Jean Krivine (2020): Rewriting theory for the life sciences: A unifying framework for CTMC semantics. In: Graph Transformation (ICGT 2020), LNCS 12150. Springer International Publishing, pp. 185–202, doi:10.1007/978-3-030-51372-6_11.
  8. Nicolas Behr & Pawel Sobocinski (2018): Rule Algebras for Adhesive Categories. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018), LIPIcs 119. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 11:1–11:21, doi:10.4230/LIPIcs.CSL.2018.11.
  9. Nicolas Behr & Pawel Sobocinski (2020): Rule Algebras for Adhesive Categories. Logical Methods in Computer Science Volume 16, Issue 3. Available at
  10. Gil Benkö, Christoph Flamm & Peter F. Stadler (2003): A Graph-Based Toy Model of Chemistry. J. Chem. Inf. Comput. Sci. 43(4), pp. 1085–1093, doi:10.1021/ci0200570.
  11. Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson & Christoph M. Wintersteiger (2019): Programming Z3. In: Engineering Trustworthy Software Systems. Springer International Publishing, pp. 148–201, doi:10.1007/978-3-030-17601-3_4.
  12. Pierre Boutillier, Mutaamba Maasha, Xing Li, Héctor F Medina-Abarca, Jean Krivine, Jérôme Feret, Ioana Cristescu, Angus G Forbes & Walter Fontana (2018): The Kappa platform for rule-based modeling. Bioinformatics 34(13), pp. i583–i592, doi:10.1093/bioinformatics/bty272.
  13. Harrie Jan Sander Bruggink (2015): Grez user manual. Available at
  14. Andrea Corradini, Tobias Heindel, Frank Hermann & Barbara König (2006): Sesqui-Pushout Rewriting. In: Graph Transformations (ICGT 2006), LNCS 4178. Springer Berlin Heidelberg, pp. 30–45, doi:10.1007/11841883_4.
  15. Andrea Corradini, Barbara König & Dennis Nolte (2017): Specifying Graph Languages with Type Graphs. In: Graph Transformation (ICGT 2017), LNCS 10373. Springer International Publishing, pp. 73–89, doi:10.1007/978-3-319-61470-0_5.
  16. Andrea Corradini, Barbara König & Dennis Nolte (2019): Specifying graph languages with type graphs. J. Log. Algebr. Methods Program. 104, pp. 176–200, doi:10.1016/j.jlamp.2019.01.005.
  17. Vincent Danos, Jerome Feret, Walter Fontana, Russell Harmer, Jonathan Hayman, Jean Krivine, Chris Thompson-Walsh & Glynn Winskel (2012): Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models. In: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012), LIPIcs 18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 276–288, doi:10.4230/LIPIcs.FSTTCS.2012.276.
  18. Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer & Jean Krivine (2008): Rule-Based Modelling, Symmetries, Refinements. In: Formal Methods in Systems Biology (FMSB 2008), LNCS 5054. Springer, pp. 103–122, doi:10.1007/978-3-540-68413-8_8.
  19. Vincent Danos, Reiko Heckel & Pawel Sobocinski (2014): Transformation and Refinement of Rigid Structures. In: Graph Transformation (ICGT 2014), LNCS 8571. Springer International Publishing, pp. 146–160, doi:10.1007/978-3-319-09108-2_10.
  20. Vincent Danos & Cosimo Laneve (2004): Formal molecular biology. TCS 325(1), pp. 69–110, doi:10.1016/j.tcs.2004.03.065.
  21. Vincent Danos & Vincent Schachter (2004): Computational Methods in Systems Biology (CMSB 2004). LNCS 3082. Springer Berlin Heidelberg, doi:10.1007/b107287.
  22. Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers & Fernando Orejas (2012): M-Adhesive Transformation Systems with Nested Application Conditions. Part 2: Embedding, Critical Pairs and Local Confluence. Fundam. Inform. 118(1-2), pp. 35–63, doi:10.3233/FI-2012-705.
  23. Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers & Fernando Orejas (2014): M-adhesive transformation systems with nested application conditions. Part 1: parallelism, concurrency and amalgamation. Math. Struct. Comput. Sci. 24(04), doi:10.1017/s0960129512000357.
  24. Marcus Ermler, Hans-Jörg Kreowski, Sabine Kuske & Caroline von Totth (2011): From Graph Transformation Units via MiniSat to GrGen.NET. In: International Symposium on Applications of Graph Transformations with Industrial Relevance, LNCS 7233. Springer, Berlin, Heidelberg, pp. 153–168, doi:10.1007/978-3-642-34176-2_14.
  25. Philippe Flajolet & Robert Sedgewick (2009): Analytic Combinatorics. Cambridge University Press, doi:10.1017/CBO9780511801655.
  26. Karsten Gabriel, Benjamin Braatz, Hartmut Ehrig & Ulrike Golas (2014): Finitary M-adhesive categories. Math. Struct. Comput. Sci. 24(04), doi:10.1017/S0960129512000321.
  27. Annegret Habel & Karl-Heinz Pennemann (2009): Correctness of high-level transformation systems relative to nested conditions. Math. Struct. Comput. Sci. 19(02), pp. 245–296, doi:10.1017/s0960129508007202.
  28. Russ Harmer, Vincent Danos, Jérôme Feret, Jean Krivine & Walter Fontana (2010): Intrinsic information carriers in combinatorial dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear Science 20(3), pp. 037108, doi:10.1063/1.3491100.
  29. Reiko Heckel, Andrea Corradini, Hartmut Ehrig & Michael Löwe (1996): Horizontal and Vertical Structuring of Typed Graph Transformation Systems. Math. Struct. Comput. Sci. 6(6), pp. 613–648, doi:10.1017/S0960129500070110.
  30. Reiko Heckel, Jochen Malte Küster & Gabriele Taentzer (2002): Confluence of Typed Attributed Graph Transformation Systems. In: Graph Transformation (ICGT 2002), LNCS 2505. Springer, pp. 161–176, doi:10.1007/3-540-45832-8_14.
  31. Reiko Heckel, Leen Lambers & Maryam Ghaffari Saadat (2019): Analysis of Graph Transformation Systems: Native vs Translation-based Techniques. In: Workshop on Graph Computation (GCM 2019), EPTCS 309. Open Publishing Association, pp. 1–22, doi:10.4204/EPTCS.309.1.
  32. Tobias Isenberg, Dominik Steenken & Heike Wehrheim (2013): Bounded Model Checking of Graph Transformation Systems via SMT Solving. In: Formal Techniques for Distributed Systems (FMOODS/FORTE 2013), LNCS 7892. Springer, Berlin, Heidelberg, pp. 178–192, doi:10.1007/978-3-642-38592-6_13.
  33. Hans-Jörg Kreowski, Sabine Kuske & Robert Wille (2010): Graph transformation units guided by a SAT solver. In: Graph Transformations (ICGT 2010), LNCS 6372. Springer, Berlin, Heidelberg, pp. 27–42, doi:10.1007/978-3-642-15928-2_3.
  34. Stephen Lack & PawełSobociński (2005): Adhesive and quasiadhesive categories. RAIRO - Theoretical Informatics and Applications 39(3), pp. 511–545, doi:10.1051/ita:2005028.
  35. Leen Lambers, Daniel Strüber, Gabriele Taentzer, Kristopher Born & Jevgenij Huebert (2018): Multi-granular conflict and dependency analysis in software engineering based on graph transformation. In: International Conference on Software Engineering (ICSE 2018). ACM, pp. 716–727, doi:10.1145/3180155.3180258.
  36. Tihamer Levendovszky, Ulrike Prange & Hartmut Ehrig (2007): Termination Criteria for DPO Transformations with Injective Matches. Electron. Notes Theor. Comput. Sci. 175(4), pp. 87–100, doi:10.1016/j.entcs.2007.04.019.
  37. Leonardo de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In: Tools and Algorithms for the Construction and Analysis of Systems. Springer Berlin Heidelberg, pp. 337–340, doi:10.1007/978-3-540-78800-3_24.
  38. Nebras Nassar, Jens Kosiol, Thorsten Arendt & Gabriele Taentzer (2019): Constructing Optimized Validity-Preserving Application Conditions for Graph Transformation Rules. In: Graph Transformation (ICGT 2019), LNCS 11629. Springer, pp. 177–194, doi:10.1007/978-3-030-23611-3_11.
  39. Guilherme Rangel, Leen Lambers, Barbara König, Hartmut Ehrig & Paolo Baldan (2008): Behavior Preservation in Model Refactoring Using DPO Transformations with Borrowed Contexts. In: Graph Transformations (ICGT 2008), LNCS 5214. Springer, pp. 242–256, doi:10.1007/978-3-540-87405-8_17.
  40. Dominik Steenken (2015): Verification of infinite-state graph transformation systems via abstraction.. University of Paderborn. Available at
  41. Dominik Steenken, Heike Wehrheim & Daniel Wonisch (2011): Sound and complete abstract graph transformation. In: Brazilian Symposium on Formal Methods. Springer, pp. 92–107, doi:10.1007/978-3-642-25032-3_7.

Comments and questions to:
For website issues: