1. H. Aït-Kaci (1991): Warren's Abstract Machine: A Tutorial Reconstruction. MIT Press, doi:10.7551/mitpress/7160.001.0001.
  2. K. R. Apt & I. Luitjes (1995): Verification of Logic Programs with Delay Declarations. In: V. S. Alagar & M. Nivat: Algebraic Methodology and Software Technology, AMAST '95, Proceedings, Lecture Notes in Computer Science 936. Springer, pp. 66–90, doi:10.1007/3-540-60043-4_47.
  3. K. R. Apt & A. Pellegrini (1994): On the Occur-Check-Free Prolog Programs. ACM Trans. Program. Lang. Syst. 16(3), pp. 687–726, doi:10.1145/177492.177673.
  4. K. R. Apt (1997): From Logic Programming to Prolog. International Series in Computer Science. Prentice-Hall.
  5. I. Bratko (2012): PROLOG Programming for Artificial Intelligence, 4th edition. Addison-Wesley.
  6. A. Colmerauer (1982): Prolog and Infinite Trees. In: K. L. Clark & S.-Å. Tärnlund: Logic programming. Academic Press, pp. 231–251.
  7. B. Courcelle (1983): Fundamental Properties of Infinite Trees. Theor. Comput. Sci. 25, pp. 95–169, doi:10.1016/0304-3975(83)90059-2.
  8. R. Chadha & D. A. Plaisted (1994): Correctness of Unification Without Occur Check in Prolog. J. Log. Program. 18(2), pp. 99–122, doi:10.1016/0743-1066(94)90048-5.
  9. P. Deransart, G. Ferrand & M. Téguia (1991): NSTO Programs (Not Subject to Occur-Check). In: V. A. Saraswat & K. Ueda: Logic Programming, Proceedings of the 1991 International Symposium. MIT Press, pp. 533–547.
  10. W. Drabent (1987): Do Logic Programs Resemble Programs in Conventional Languages?. In: Proceedings of 1987 Symposium on Logic Programming. IEEE Computer Society Press, pp. 389–396. ISBN 0-8186-0799-8.
  11. W. Drabent (2018): Logic + control: On program construction and verification. Theory and Practice of Logic Programming 18(1), pp. 1–29, doi:10.1017/S1471068417000047.
  12. W. Drabent (2021): On correctness and completeness of an n queens program. Theory and Practice of Logic Programming. To appear. Former version available at
  13. W. Drabent (2021): SLD-resolution without occur-check, an example. CoRR abs/2103.01911. Available at
  14. Thom Frühwirth (1991): nqueens. A post in comp.lang.prolog. Available at 1991-03-08. Also in [Section 4.1, Exercise (v)]Sterling-Shapiro-shorter..
  15. J. M. Howe & A. King (2012): A Pearl on SAT and SMT Solving in Prolog. Theor. Comput. Sci. 435, pp. 43–55. Available at
  16. L. Sterling & E. Shapiro (1994): The Art of Prolog, 2 edition. The MIT Press.

Comments and questions to:
For website issues: