1. Damiano Azzolini, Fabrizio Riguzzi & Evelina Lamma (2021): A Semantics for Hybrid Probabilistic Logic Programs with Function Symbols. Artificial Intelligence 294, pp. 103452, doi:10.1016/j.artint.2021.103452.
  2. Fabio Gagliardi Cozman & Denis Deratani Mauá (2020): The joy of Probabilistic Answer Set Programming: Semantics, complexity, expressivity, inference. International Journal of Approximate Reasoning 125, pp. 218–239, doi:10.1016/j.ijar.2020.07.004.
  3. Bernd Gutmann, Manfred Jaeger & Luc De Raedt (2011): Extending ProbLog with Continuous Distributions. In: Paolo Frasconi & Francesca A. Lisi: 20th International Conference on Inductive Logic Programming (ILP 2010), LNCS 6489. Springer, pp. 76–91, doi:10.1007/978-3-642-21295-6_12.
  4. Bernd Gutmann, Ingo Thon, Angelika Kimmig, Maurice Bruynooghe & Luc De Raedt (2011): The magic of logical inference in probabilistic programming. Theory and Practice of Logic Programming 11(4-5), pp. 663–680, doi:10.1017/S1471068411000238.
  5. Muhammad Asiful Islam, CR Ramakrishnan & IV Ramakrishnan (2012): Inference in probabilistic logic programs with continuous random variables. Theory and Practice of Logic Programming 12, pp. 505–523, doi:10.1017/S1471068412000154.
  6. S Michels (2016): Hybrid Probabilistic Logics: Theoretical Aspects, Algorithms and Experiments. Radboud University Nijmegen.
  7. Steffen Michels, Arjen Hommersom, Peter J. F. Lucas & Marina Velikova (2015): A new probabilistic constraint logic programming language based on a generalised distribution semantics. Artificial Intelligence 228, pp. 1–44, doi:10.1016/j.artint.2015.06.008.
  8. Pedro Zuidberg Dos Martires, Anton Dries & Luc De Raedt (2018): Knowledge Compilation with Continuous Random Variables and its Application in Hybrid Probabilistic Logic Programming. CoRR abs/1807.00614.

Comments and questions to:
For website issues: