References

  1. Z.M. Ariola & H. Herbelin (2003): Minimal Classical Logic and Control Operators. In: J.C.M. Baeten, J.K. Lenstra, J. Parrow & G.J. Woeginger: Proceedings of Automata, Languages and Programming, 30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003, Lecture Notes in Computer Science 2719. Springer Verlag, pp. 871–885, doi:10.1007/3-540-45061-0_68.
  2. S. van Bakel (1992): Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science 102(1), pp. 135–163, doi:10.1016/0304-3975(92)90297-S.
  3. S. van Bakel (2004): Cut-Elimination in the Strict Intersection Type Assignment System is Strongly Normalising. Notre Dame journal of Formal Logic 45(1), pp. 35–63, doi:10.1305/ndjfl/1094155278.
  4. S. van Bakel (2010): Sound and Complete Typing for λμ. In: Proceedings of 5th International Workshop Intersection Types and Related Systems (ITRS'10), Edinburgh, Scotland, Electronic Proceedings in Theoretical Computer Science 45, pp. 31–44, doi:10.4204/EPTCS.45.3.
  5. S. van Bakel (2011): Strict intersection types for the Lambda Calculus. ACM Computing Surveys 43, pp. 20:1–20:49, doi:10.1145/1922649.1922657.
  6. S. van Bakel, F. Barbanera & U. de'Liguoro (2011): A Filter Model for λμ. In: L. Ong: Proceedings of 10th International Conference on Typed Lambda Calculi and Applications (TLCA'11), Lecture Notes in Computer Science 6690. Springer Verlag, pp. 213–228, doi:10.1007/978-3-642-21691-6_18.
  7. S. van Bakel & P. Lescanne (2008): Computation with Classical Sequents. Mathematical Structures in Computer Science 18, pp. 555–609, doi:10.1017/S0960129508006762.
  8. F. Barbanera & S. Berardi (1996): A Symmetric Lambda Calculus for Classical Program Extraction. Information and Computation 125(2), pp. 103–117, doi:10.1006/inco.1996.0025.
  9. H. Barendregt (1984): The Lambda Calculus: its Syntax and Semantics, revised edition. North-Holland, Amsterdam.
  10. H. Barendregt, M. Coppo & M. Dezani-Ciancaglini (1983): A filter lambda model and the completeness of type assignment. Journal of Symbolic Logic 48(4), pp. 931–940, doi:10.2307/2273659.
  11. A. Church (1936): A Note on the Entscheidungsproblem. Journal of Symbolic Logic 1(1), pp. 40–41, doi:10.2307/2269326.
  12. M. Coppo & M. Dezani-Ciancaglini (1978): A New Type Assignment for λ-Terms. Archiv für Mathematische Logic und Grundlagen Forschung 19, pp. 139–156, doi:10.1007/BF02011875.
  13. M. Coppo, M. Dezani-Ciancaglini & B. Venneri (1980): Principal type schemes and λ-calculus semantics. In: J.R. Hindley & J.P. Seldin: To H.B. Curry, Essays in combinatory logic, lambda-calculus and formalism. Academic press, New York, pp. 535–560.
  14. P.-L. Curien & H. Herbelin (2000): The Duality of Computation. In: Proceedings of the 5th ACM SIGPLAN International Conference on Functional Programming (ICFP'00), ACM Sigplan Notices 35.9. ACM, pp. 233–243, doi:10.1145/351240.351262.
  15. G. Gentzen (1935): Investigations into logical deduction. In: The Collected Papers of Gerhard Gentzen. Ed M. E. Szabo, North Holland, 68ff (1969).
  16. S. Ghilezan (1996): Strong Normalization and Typability with Intersection Types. Notre Dame journal of Formal Logic 37(1), pp. 44–52, doi:10.1305/ndjfl/1040067315.
  17. Ph. de Groote (1994): On the Relation between the λμ-Calculus and the Syntactic Theory of Sequential Control. In: Proceedings of 5th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR'94), Lecture Notes in Computer Science 822. Springer Verlag, pp. 31–43, doi:10.1007/3-540-58216-9_27.
  18. H. Herbelin & A. Saurin (2010): λμ-calculus and λμ-calculus: a Capital Difference. Manuscript.
  19. J.-L Krivine (1993): Lambda calculus, types and models. Ellis Horwood.
  20. M. Parigot (1992): An algorithmic interpretation of classical natural deduction. In: Proceedings of 3rd International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR'92), Lecture Notes in Computer Science 624. Springer Verlag, pp. 190–201, doi:10.1007/BFb0013061.
  21. M. Parigot (1997): Proofs of Strong Normalisation for Second Order Classical Natural Deduction. Journal of Symbolic Logic 62(4), pp. 1461–1479, doi:10.2307/2275652.
  22. G. Pottinger (1980): A Type Assignment for the Strongly Normalizable λ-terms. In: J.P. Seldin & J.R. Hindley: To H. B. Curry, Essays in Combinatory Logic, Lambda-Calculus and Formalism. Academic press, New York, pp. 561–577.
  23. A. Saurin (2008): On the Relations between the Syntactic Theories of λμ-Calculi. In: M. Kaminski & S. Martini: Computer Science Logic, 22nd International Workshop (CSL'08), Bertinoro, Italy, Lecture Notes in Computer Science 5213. Springer Verlag, pp. 154–168, doi:10.1016/j.entcs.2005.11.072.
  24. A. Saurin (2010): Standardization and Böhm Trees for λμ-calculus. In: M. Blume, N. Kobayashi & G. Vidal: Functional and Logic Programming, 10th International Symposium, (FLOPS'10), Sendai, Japan, Lecture Notes in Computer Science 6009. Springer Verlag, pp. 134–149, doi:10.1007/978-3-642-12251-4_11.
  25. Th. Streicher & B. Reus (1998): Classical logic: Continuation Semantics and Abstract Machines. Journal of Functional Programming 11(6), pp. 543–572, doi:10.1017/S0956796898003141.
  26. W. Tait (1967): Intensional Interpretations of Functionals of Finite Type I. Journal of Symbolic Logic 32(2), pp. 198–212, doi:10.2307/2271658.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org