References

  1. Pablo Arrighi & Gilles Dowek (2008): Linear-algebraic lambda-calculus: higher-order, encodings, and confluence.. In: RTA, pp. 17–31, doi:10.1007/978-3-540-70590-1_2.
  2. E. Bernstein & U. Vazirani (1997): Quantum Complexity Theory. SIAM J. Comput. 26(5), pp. 1411–1473, doi:10.1137/S0097539796300921.
  3. R. Blute, A. Guglielmi, I. Ivanov, P. Panangaden & L. Straßburger (2014): A Logical Basis for Quantum Evolution and Entanglement. In: Categories and Types in Logic, Language, and Physics, LNCS 8222, pp. 90–107, doi:10.1007/978-3-642-54789-8_6.
  4. U. Dal Lago & C. Faggian (2011): On Multiplicative Linear Logic, Modality and Quantum Circuits. In: QPL, Electron. Proc. Theor. Comput. Sci. 95, pp. 55–66, doi:10.4204/EPTCS.95.6.
  5. U. Dal Lago, A. Masini & M. Zorzi (2009): On a Measurement-Free Quantum Lambda Calculus with Classical Control. Math. Structures Comput. Sci. 19(2), pp. 297–335, doi:10.1017/S096012950800741X.
  6. U. Dal Lago, A. Masini & M. Zorzi (2010): Quantum Implicit Computational Complexity. Theoret. Comput. Sci. 411(2), pp. 377–409, doi:10.1016/j.tcs.2009.07.045.
  7. U. Dal Lago, A. Masini & M. Zorzi (2011): Confluence Results for A Quantum Lambda Calculus with Measurements. Electron. Notes Theor. Comput. Sci. 270(2), pp. 251–261, doi:10.1016/j.entcs.2011.01.035.
  8. U. Dal Lago & M. Zorzi (2013): Wave-Style Token Machines and Quantum Lambda Calculi (Long Version).. Available at http://arxiv.org/abs/1307.0550.
  9. Y. Delbecque (2011): Game Semantics for Quantum Data. Electron. Notes Theor. Comput. Sci. 270(1), pp. 41–57, doi:10.1016/j.entcs.2011.01.005.
  10. Y. Delbecque & P. Panangaden (2008): Game Semantics for Quantum Stores. Electron. Notes Theor. Comput. Sci. 218, pp. 153–170, doi:10.1016/j.entcs.2008.10.010.
  11. J.-Y. Girard (1989): Geometry of Interaction I: Interpretation of System F. In: Proc. of the Logic Colloquium '88, pp. 221–260, doi:10.1016/s0049-237x(08)70271-4.
  12. G. Gonthier, M. Abadi & J.-J. Lévy (1992): The Geometry of Optimal Lambda Reduction. In: POPL, pp. 15–26, doi:10.1145/143165.143172.
  13. I. Hasuo & N. Hoshino (2011): Semantics of higher-order quantum computation via geometry of interaction. In: LICS, pp. 237–246, doi:10.1109/LICS.2011.26.
  14. Ian Mackie (1995): The Geometry of Interaction Machine. In: POPL, pp. 198–208, doi:10.1145/199448.199483.
  15. M. Nielsen & I. Chuang (2000): Quantum computation and quantum information. Cambridge University Press.
  16. P. Selinger & B. Valiron (2006): A lambda calculus for quantum computation with classical control. Math. Structures Comput. Sci. 16(3), pp. 527–552, doi:10.1017/S0960129506005238.
  17. Peter Selinger & Benoît Valiron (2008): On a Fully Abstract Model for a Quantum Linear Functional Language. Electron. Notes Theor. Comput. Sci. 210, pp. 123–137, doi:10.1016/j.entcs.2008.04.022.
  18. Peter W. Shor (1997): Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), pp. 1484–1509, doi:10.1137/S0097539795293172.
  19. A. van Tonder (2004): A lambda calculus for quantum computation. SIAM J. Comput. 33(5), pp. 1109–1135, doi:10.1137/S0097539703432165.
  20. M. Volpe, L. Viganò & M Zorzi (2014): Quantum States Transformation and Branching Distributed Temporal Logic. In: WOLLIC, LNCS 8652, pp. 1–19, doi:10.1007/978-3-662-44145-9_1.
  21. Akira Yoshimizu, Ichiro Hasuo, Claudia Faggian & Ugo Dal Lago (2014): Measurements in Proof Nets as Higher-Order Quantum Circuits. In: ESOP, LNCS 8410, pp. 371–391, doi:10.1007/978-3-642-54833-8_20.
  22. M. Zorzi (2013): On Quantum Lambda Calculi: a Foundational Perspective. Math. Structures Comput. Sci., pp. 1–94. Accepted for Publication.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org