References

  1. Z.M. Ariola & H. Herbelin (2003): Minimal classical logic and control operators. In: ICALP, pp. 871–885, doi:10.1007/3-540-45061-0_68.
  2. A. Bucciarelli, T. Ehrhard & G. Manzonetto (2007): Not Enough Points Is Enough. In: CSL, LNCS 4646, pp. 298–312, doi:10.1007/978-3-540-74915-8_24.
  3. P.-L Curien & H. Herbelin (2000): The duality of computation. In: ACM SIGPLAN International Conference on Functional Programming, pp. 233–243, doi:10.1145/351240.351262.
  4. J. Czermak (1977): A Remark on Gentzen's Calculus of Sequents. Notre Dame Journal of Formal Logic 18(3), pp. 471–474, doi:10.1305/ndjfl/1093888021.
  5. V. Danos, J.-B. Joinet & H. Schellinx (1995): LKQ and LKT: Sequent calculi for second order logic based upon dual linear decompositions of classical implication. In: J.-Y. Girard, Y. Lafont & L. Regnier: Advances in linear logic, London Math. Society Lecture Note Series 222.
  6. R. David & W. Py (2001): λμ-Calculus and Böhm's Theorem. J. Symb. Log. 66(1), pp. 407–413, doi:10.2307/2694930.
  7. P. De Groote (1994): On the relation between the λμ-calculus and the syntactic theory of sequential control. In: LPAR, pp. 31–43, doi:10.1007/3-540-58216-9_27.
  8. P. De Groote (1995): A Simple Calculus of Exception Handling. In: TLCA, pp. 201–215.
  9. P. De Groote (1998): An environment machine for the λμ-calculus. Math. Struct. Comp. Sci. 8(6), pp. 637–669, doi:10.1017/S0960129598002667.
  10. M. Felleisen & R. Hieb (1992): The Revised Report on the Syntactic Theories of Sequential Control and State. Theor. Comput. Sci. 103, pp. 235–271, doi:10.1016/0304-3975(92)90014-7.
  11. G. Gentzen (1935): Investigations into logical deduction.
  12. J.-Y. Girard (1986): The system F of variable types, fifteen years later. Theor. Comput. Sci. 45, pp. 159–192, doi:10.1016/0304-3975(86)90044-7.
  13. J.-Y. Girard (1991): A new constructive logic: Classical Logic. Math. Struct. in Comp. Sci. 1(3), pp. 255–296, doi:10.1017/S0960129500001328.
  14. T. Griffin (1990): A Formulae-as-Types Notion of Control. In: POPL, pp. 47–58, doi:10.1145/96709.96714.
  15. M. Hofmann & T. Streicher (1997): Continuation Models are Universal for lambda-mu-Calculus. In: LICS, pp. 387–395, doi:10.1109/LICS.1997.614964.
  16. W.A. Howard (1980): The formulae-as-types notion of construction. In: J.R. Hindley & J.P. Seldin: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490.
  17. J.W. Klop & R.C. de Vrijer (1989): Unique normal forms for lambda calculus with surjective pairing. Information and Computation 2, pp. 97–113, doi:10.1016/0890-5401(89)90014-X.
  18. J.-L. Krivine (2001): Typed lambda-calculus in classical Zermelo-Frænkel set theory. Arch. Math. Log. 40(3), pp. 189–205, doi:10.1007/s001530000057.
  19. Y. Lafont, B. Reus & T. Streicher (1993): Continuations Semantics or Expressing Implication by Negation. Technical Report 9321. Ludwig-Maximilians-Universitat, Munchen. Technical Report.
  20. O. Laurent (2003): Krivine's abstract machine and the lambda mu-calculus (an overview). Unpublished.
  21. O. Laurent (2003): Polarized proof-nets and lambda-mu calculus. Theor. Comput. Sci. 290(1), pp. 161–188, doi:10.1016/S0304-3975(01)00297-3.
  22. O. Laurent (2011): Intuitionistic Dual-intuitionistic Nets. J. Log. Comput. 21(4), pp. 561–587, doi:10.1093/logcom/exp044.
  23. O. Laurent & L. Regnier (2003): About Translations of Classical Logic into Polarized Linear Logic. In: LICS, pp. 11–20, doi:10.1109/LICS.2003.1210040.
  24. S. Lengrand (2003): Call-by-value, call-by-name, and strong normalization for the classical sequent calculus. Elec. Notes in Theor. Comp. Sci. 86, doi:10.1016/S1571-0661(05)82619-2. WRS.
  25. T. Low & T. Streicher (2006): Universality Results for Models in Locally Boolean Domains. In: CSL, pp. 456–470, doi:10.1007/11874683_30.
  26. P.-A. Melliès: Categorical semantics of linear logic. Available at http://www.pps.jussieu.fr/~mellies/papers/panorama.pdf. Panoramas et Synthèses 27, Société Mathématique de France, 2009.
  27. M. Parigot (1992): λμ-calculus: An Algorithmic Interpretation of Classical Natural Deduction. In: LPAR, pp. 190–201, doi:10.1007/BFb0013061.
  28. D. Prawitz (1965): Natural Deduction - a proof theoretical study. Almqvist & Wiksell, Stokholm.
  29. B. Reus & T. Streicher (1998): Classical Logic, Continuation Semantics and Abstract Machines. J. Funct. Program. 8(6), pp. 543–572, doi:10.1017/S0956796898003141.
  30. P. Selinger (2001): Control categories and duality: on the categorical semantics of the lambda-mu calculus. Math. Struct. in Comp. Sci. 11, pp. 207–260, doi:10.1017/S096012950000311X.
  31. R. Smullyan (1968): First-order logic. Springer-Verlag, New York, doi:10.1007/978-3-642-86718-7.
  32. C. Urban (2000): Classical Logic and Computation. University of Cambridge Comp. Laboratory.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org