1. L. Aceto & D. Murphy (1996): Timing and Causality in Process Algebra. Acta Informatica 33, pp. 317–350, doi:10.1007/s002360050047.
  2. R. Alur & D.L. Dill (1994): A Theory of Timed Automata. Theoretical Computer Science 126, pp. 183–235, doi:10.1016/0304-3975(94)90010-8.
  3. M. Bernardo (2015): On the Tradeoff between Compositionality and Exactness in Weak Bisimilarity for Integrated-Time Markovian Process Calculi. Theoretical Computer Science 563, pp. 99–143, doi:10.1016/j.tcs.2014.10.025.
  4. Y. Deng & M. Hennessy (2013): On the Semantics of Markov Automata. Information and Computation 222, pp. 139–168, doi:10.1016/j.ic.2012.10.010.
  5. C. Eisentraut, H. Hermanns & L. Zhang (2010): On Probabilistic Automata in Continuous Time. In: Proc. of the 25th IEEE Symp. on Logic in Computer Science (LICS 2010). IEEE-CS Press, pp. 342–351, doi:10.1109/LICS.2010.41. Full version available at
  6. D. Guck, H. Hatefi, H. Hermanns, J.-P. Katoen & M. Timmer (2013): Modelling, Reduction and Analysis of Markov Automata. In: Proc. of the 10th Int. Conf. on the Quantitative Evaluation of Systems (QEST 2013), LNCS 8054. Springer, pp. 55–71, doi:10.1007/978-3-642-40196-1_5.
  7. H. Hermanns (2002): Interactive Markov Chains. Springer, doi:10.1007/3-540-45804-2. Volume 2428 of LNCS.
  8. R. Lanotte, A. Maggiolo-Schettini & A. Troina (2010): Weak Bisimulation for Probabilistic Timed Automata. Theoretical Computer Science 411, pp. 4291–4322, doi:10.1016/j.tcs.2010.09.003.
  9. J. Markovski, P.R. D'Argenio, J.C.M. Baeten & E.P. de Vink (2012): Reconciling Real and Stochastic Time: The Need for Probabilistic Refinement. Formal Aspects of Computing 24, pp. 497–518, doi:10.1007/s00165-012-0230-y.
  10. F. Moller & C. Tofts (1990): A Temporal Calculus of Communicating Systems. In: Proc. of the 1st Int. Conf. on Concurrency Theory (CONCUR 1990), LNCS 458. Springer, pp. 401–415, doi:10.1007/BFb0039073.
  11. F. Moller & C. Tofts (1992): Behavioural Abstraction in TCCS. In: Proc. of the 19th Int. Coll. on Automata, Languages and Programming (ICALP 1992), LNCS 623. Springer, pp. 559–570, doi:10.1007/3-540-55719-9_104.
  12. J. Schuster & M. Siegle (2014): Markov Automata: Deciding Weak Bisimulation by Means of Non-Naïvely Vanishing States. Information and Computation 237, pp. 151–173, doi:10.1016/j.ic.2014.02.001.
  13. R. Segala (1995): Modeling and Verification of Randomized Distributed Real-Time Systems. PhD Thesis.
  14. M. Timmer, J. van de Pol & M. Stoelinga (2013): Confluence Reduction for Markov Automata. In: Proc. of the 11th Int. Conf. on Formal Modeling and Analysis of Timed Systems (FORMATS 2013), LNCS 8053. Springer, pp. 243–257, doi:10.1007/978-3-642-40229-6_17.
  15. Wang Yi (1991): CCS + Time = An Interleaving Model for Real Time Systems. In: Proc. of the 18th Int. Coll. on Automata, Languages and Programming (ICALP 1991), LNCS 510. Springer, pp. 217–228, doi:10.1007/3-540-54233-7_136.

Comments and questions to:
For website issues: