References

  1. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. Proc. IEEE Symp. Logic In Comp. Sci., pp. 415–425, doi:10.1109/LICS.2004.1319636.
  2. Andrew Adamatzky (2007): Physarum machines: encapsulating reaction-diffusion to compute spanning tree. Naturwissenschaften 94(12), pp. 975–980, doi:10.1007/s00114-007-0276-5.
  3. Martyn Amos (2005): Theoretical and Experimental DNA Computation. Springer * .
  4. Janet Anders & Dan Browne (2009): Computational power of correlations. Phys. Rev. Lett. 102, pp. 050502, doi:10.1103/PhysRevLett.102.050502.
  5. Janet Anders, Daniel K. L. Oi, Elham Kashefi, Dan E. Browne & Erika Andersson (2010): Ancilla-driven universal quantum computation. Phys. Rev. A 82(2), pp. 020301, doi:10.1103/PhysRevA.82.020301.
  6. Richard Banach, Czeslaw Jeske, Simon Fraser, Richard Cross, Michael Poppleton, Susan Stepney & Steven King (2004): Approaching the Formal Design and Development of Complex Systems: The Retrenchment Position. In: WSCS, IEEE ICECCS'04. Available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.9231.
  7. Richard Banach, Czeslaw Jeske, Mike Poppleton & Susan Stepney (2007): Retrenching the Purse. Fundamenta Informaticae 77, pp. 29–69. Available at http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.8631.
  8. Richard Banach & Mike Poppleton (1998): Retrenchment: an engineering variation on refinement. In: 2nd Intl. B Conference, LNCS 1393. Springer, pp. 129–147, doi:10.1007/BFb0053358.
  9. Richard Banach, Mike Poppleton, Czeslaw Jeske & Susan Stepney (2007): Engineering and theoretical underpinnings of retrenchment. Sci. Comp. Prog. 67(2-3), pp. 301–329, doi:10.1016/j.scico.2007.04.002.
  10. M. Bechmann, A. Sebald & S. Stepney (2011): Boolean logic-gate design principles in unconventional computers: an NMR case study. International J. Unconventional Computing. In press.
  11. Matthias Bechmann, Angelika Sebald & Susan Stepney (2010): From binary to continuous gates – and back again. In: ICES 2010, LNCS 6274. Springer, pp. 335–347, doi:10.1007/978-3-642-15323-5_29.
  12. Ed Blakey (2010): Unconventional complexity measures for unconventional computers. Natural Computing, doi:10.1007/s11047-010-9226-9.
  13. K. L. Brown, C. Horsman, V. M. Kendon & W. J. Munro (2011): Layer by layer generation of cluster states. Available at http://arxiv.org/abs/1111.1774v1.
  14. Katherine L. Brown, Suvabrata De, Viv Kendon & William J. Munro (2011): Ancilla-based quantum simulation. New J. Phys. 13, pp. 095007, doi:10.1088/1367-2630/13/9/095007.
  15. John A. Clark, Susan Stepney & Howard Chivers (2005): Breaking the Model: finalisation and a taxonomy of security attacks. ENTCS 137(2), pp. 225–242, doi:10.1016/j.entcs.2005.04.033.
  16. D. Cooper, S. Stepney & J. Woodcock (2002): Derivation of Z Refinement Proof Rules: forwards and backwards rules incorporating input/output refinement. Technical Report YCS-2002-347. Department of Computer Science, University of York. Available at http://www.cs.york.ac.uk/ftpdir/reports/2002/YCS/347/YCS-2002-347.pdf.
  17. David G. Cory (2000): NMR Based Quantum Information Processing: Achievements and Prospects. Fortschritte der Physik 48(9–11), pp. 875–907, doi:10.1002/1521-3978(200009)48:9/11.
  18. E. d'Hondt & P. Panangaden (2006): Quantum weakest preconditions. Math. Struct. Comp. Sci. 16(3), pp. 429–451, doi:10.1017/S0960129506005251.
  19. David P. DiVincenzo (2000): The Physical Implementation of Quantum Computation. Fortschritte der Physik 48(9–11), pp. 771–783, doi:10.1002/1521-3978(200009)48:9/11. ArXiv:quant-ph/0002077v3.
  20. Peter Hines (1999): The categorical theory of self-similarity. Theory and Applications of Categories 6, pp. 33–46. Available at http://emis.math.ca/journals/TAC/volumes/6/n3/n3.pdf.
  21. Peter Hines (2003): A categorical framework for finite state machines. Mathematical Structures in Computer Science 13, pp. 451–480, doi:10.1017/S0960129503003931.
  22. Clare Horsman, Katherine L. Brown, William J. Munro & Vivien M. Kendon (2011): Reduce, reuse, recycle for robust cluster-state generation. Phys. Rev. A 83(4), pp. 042327, doi:10.1103/PhysRevA.83.042327.
  23. Jonathan A. Jones (2011): Quantum computing with NMR. Progress in Nuclear Magnetic Resonance Spectroscopy 59, pp. 91–120, doi:10.1016/j.pnmrs.2010.11.001.
  24. Richard Jozsa (2005): An introduction to measurement based quantum computation. Available at http://arxiv.org/abs/quant-ph/0508124.
  25. V. Kendon, A. Sebald, S. Stepney, Matthias Bechmann, Peter Hines & Robert C. Wagner (2011): Heterotic computing. In: Unconventional Computation, LNCS 6714. Springer, pp. 113–124, doi:10.1007/978-3-642-21341-0_16.
  26. L. Kuhnert, K. Agladze & V. Krinsky (1989): Image processing using light-sensitive chemical waves. Nature 337, pp. 244–247, doi:10.1038/337244a0.
  27. J. Lambek & P. J. Scott (1988): An introduction to higher-order categorical logic. Cambridge Studies in Advanced Mathematics 7. Cambridge University Press * .
  28. Seth Lloyd & Samuel L Braunstein (1999): Quantum computation over continuous variables. Phys. Rev. Lett. 82, pp. 1784, doi:10.1103/PhysRevLett.82.1784.
  29. Saunders Mac Lane (1971): Categories for the working mathematician. Graduate Texts in Mathematics, 1st Ed.. Springer Verlag * .
  30. G. J. Milburn, S. Schneider & D. F. V. James (2000): Ion Trap Quantum Computing with Warm Ions. Fortschr. Phys. 48, pp. 801–810, doi:10.1002/1521-3978(200009)48:9/11<801::AID-PROP801>3.0.CO;2-1.
  31. Jonathan W. Mills (2008): The nature of the Extended Analog Computer. Physica D: Nonlinear Phenomena 237(9), pp. 1235–1256, doi:10.1016/j.physd.2008.03.041.
  32. Ikuko N. Motoike & Andrew Adamatzky (2005): Three-valued logic gates in reaction-diffusion excitable media. Chaos, Solitons & Fractals 24(1), pp. 107–114, doi:10.1016/S0960-0779(04)00461-8.
  33. Robert Raussendorf & Hans J Briegel (2001): A One-Way Quantum Computer. Phys. Rev. Lett. 86, pp. 5188–5191, doi:10.1103/PhysRevLett.86.5188.
  34. M. Roselló-Merino, M. Bechmann, A. Sebald & S. Stepney (2010): Classical computing in nuclear magnetic resonance.. International J. Unconventional Computing 6(3–4), pp. 163–195. Available at http://www-users.cs.york.ac.uk/susan/bib/ss/nonstd/ijnmc09.pdf.
  35. D. Silva Graça (2004): Some Recent Developments on Shannon's GPAC. Math. Log. Quart. 50(4–5), pp. 473–485, doi:10.1002/malq.200310113.
  36. T. P. Spiller, W. J. Munro, S. D. Barrett & P. Kok (2005): An introduction to quantum information processing: applications and realisations. Comptemporary Physics 46, pp. 407, doi:10.1080/00107510500293261.
  37. T. P. Spiller, Kae Nemoto, Samuel L. Braunstein, W. J. Munro, P. van Loock & G. J. Milburn (2006): Quantum Computation by Communication. New J. Phys. 8, pp. 30, doi:10.1088/1367-2630/8/2/030.
  38. Susan Stepney (2008): The Neglected Pillar of Material Computation. Physica D: Nonlinear Phenomena 237(9), pp. 1157–1164, doi:10.1016/j.physd.2008.01.028.
  39. Ágota Tóth & Kenneth Showalter (1995): Logic gates in excitable media. J. Chem. Phys 103, pp. 2058–2066, doi:10.1063/1.469732.
  40. Rodney S. Tucker (2010): The role of optics in computing. Nature Photonics 4, pp. 405, doi:10.1038/nphoton.2010.162.
  41. Peter Wegner (1997): Why interaction is more powerful than algorithms. CACM 40, pp. 80–91, doi:10.1145/253769.253801.
  42. Damien Woods & Thomas J. Naughton (2008): Parallel and Sequential Optical Computing. In: Optical SuperComputing, LNCS 5172. Springer, pp. 70–86, doi:10.1007/978-3-540-85673-3_6.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org