References

  1. S. Abramsky (2010): Coalgebras, Chu spaces, and representations of physical systems. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, pp. 411–420, doi:10.1109/LICS.2010.35.
  2. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425, doi:10.1109/LICS.2004.1319636.
  3. J. Adámek, F. Bonchi, M. Hülsbusch, B. König, S. Milius & A. Silva (2012): A coalgebraic perspective on minimization and determinization. In: Lars Birkedal: Foundations of Software Science and Computational Structures, Lecture Notes in Computer Science 7213. Springer Berlin Heidelberg, pp. 58–73, doi:10.1007/978-3-642-28729-9_4.
  4. J. Butterfield & C. Isham (1998): A topos perspective on the Kochen–Specker theorem: I. Quantum states as generalized valuations. Int. Jour. Theor. Physics 37(11), pp. 2669–2733, doi:10.1023/A:1026680806775.
  5. A. Dvurečenskij & S. Pulmannová (2000): New Trends in Quantum Structures. Kluwer Academic Publishers, doi:10.1007/978-94-017-2422-7.
  6. J. Goguen (1972): Minimal realizations of machines in closed categories. Bull. Amer. Math. Soc. 78(5), pp. 777–783, doi:10.1090/S0002-9904-1972-13032-5.
  7. I. Hasuo, B. Jacobs & A. Sokolova (2007): Generic trace semantics via coinduction. Logical Methods in Computer Science 3(4:11), pp. 1–36.
  8. B. Jacobs (2010): Convexity, duality and effects. In: Cristian Calude & Vladimiro Sassone: Theoretical Computer Science, IFIP Advances in Information and Communication Technology. Springer Boston, pp. 1–19, doi:10.1007/978-3-642-15240-5_1.
  9. B. Jacobs (2011): Coalgebraic walks, in quantum and Turing computing. In: Lecture Notes in Computer Science, Foundations of Software Science and Computational Structures 6604, pp. 12–26, doi:10.1007/978-3-642-19805-2_2.
  10. B. Jacobs, A. Silva & A. Sokolova (2012): Trace semantics via determinization. In: Lecture Notes in Computer Science, to appear, Proceedings of CMCS 2012, doi:10.1007/978-3-642-32784-1_7.
  11. C. Moore & J. Crutchfield (2000): Quantum automata and quantum grammars. Theoretical Computer Science 237(1), pp. 275–306, doi:10.1016/S0304-3975(98)00191-1.
  12. A. Nerode (1958): Linear automaton transformations. Proc. Amer. Math. Soc. 9(4), pp. 541–544, doi:10.1090/S0002-9939-1958-0135681-9.
  13. F. Roumen (2012): Coalgebraic semantics for quantum computation. Radboud University Nijmegen.
  14. J. Rutten (1998): Automata and coinduction (an exercise in coalgebra). In: D. Sangiorigi & R. de Simone: Proceedings of CONCUR '98, LNCS 1466. Springer, pp. 194–218, doi:10.1007/BFb0055624.
  15. J. Rutten (2000): Universal coalgebra: a theory of systems. Theoretical Computer Science 249(1), pp. 3–80, doi:10.1016/S0304-3975(00)00056-6.
  16. A. Silva, F. Bonchi, M. Bonsangue & J. Rutten (2010): Generalizing the powerset construction, coalgebraically. In: Proceedings of the IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Leibniz International Proceedings in Informatics 8, pp. 272–283, doi:10.4230/LIPIcs.FSTTCS.2010.272.
  17. S. Elías Venegas-Andraca (2008): Quantum Walks for Computer Scientists. Morgan & Claypool.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org