References

  1. S. Awodey (2010): Type theory and homotopy. http://arxiv.org/abs/1010.1810arXiv:1010.1810.
  2. S. Awodey & L. Birkedal (2003): Elementary axioms for local maps of toposes. Journal of Pure and Applied Algebra 177(3), pp. 215–230, doi:10.1016/S0022-4049(02)00283-9.
  3. J. Baez & J. Dolan (1995): Higher-Dimensional Algebra and Topological Quantum Field Theory. J. Math. Phys. 36(11), pp. 6073–6105, doi:10.1063/1.531236. http://arxiv.org/abs/q-alg/9503002arXiv:q-alg/9503002.
  4. J. Baez, E. Hoffnung & L. Rogers (2010): Categorified Symplectic Geometry and the Classical String. Commun. Math. Phys. 293(3), pp. 701–725, doi:10.1007/s00220-009-0951-9. http://arxiv.org/abs/0808.0246arXiv:0808.0246.
  5. J. Baez & M. Stay (2011): Physics, Topology, Logic and Computation: A Rosetta Stone. In: Bob Coecke: New Structures for Physics, Lecture Notes in Physics 813. Springer, pp. 95–174, doi:10.1007/978-3-642-12821-9_2. http://arxiv.org/abs/0903.0340arXiv:0903.0340.
  6. J. C. Baez & A. E. Hoffnung (2011): Convenient categories of smooth spaces. Trans. Amer. Math. Soc. 363(11), pp. 5789–5825, doi:10.1090/S0002-9947-2011-05107-X. http://arxiv.org/abs/0807.1704arXiv:0807.1704.
  7. C. Barwick & C. Schommer-Pries: On the Unicity of the Homotopy Theory of Higher Categories. http://arxiv.org/abs/1112.0040arXiv:1112.0040.
  8. J. Bernstein (1974): Spontaneous symmetry breaking, gauge theories, the Higgs mechanism and all that. Rev. Mod. Phys. 46, pp. 7–48, doi:10.1103/RevModPhys.46.7.
  9. K. Brown (1973): Abstract homotopy theory and generalized sheaf cohomology. Transactions of the American Mathematical Society 186, pp. 419–458, doi:10.1090/S0002-9947-1973-0341469-9.
  10. J.-L. Brylinski (1993): Loop Spaces, Characteristic Classes, and Geometric Quantization. Birkhäuser, doi:10.1007/978-0-8176-4731-5.
  11. A. Carboni, G. Janelidze, G. M. Kelly & R. Paré (1997): On localization and stabilization for factorization systems. Appl. Categ. Structures 5(1), pp. 1–58, doi:10.1023/A:1008620404444.
  12. C. Cassidy, M. Hébert & G. M. Kelly (1985): Reflective subcategories, localizations and factorization systems. J. Austral. Math. Soc. Ser. A 38(3), pp. 287–329, doi:10.1017/S1446788700023624.
  13. CERN (2012): CERN experiments observe particle consistent with long-sought Higgs boson. http://press-archived.web.cern.ch/press-archived/PressReleases/Releases2012/PR17.12E.htmlpress-archived.web.cern.ch/press-archived/PressReleases/Releases2012/PR17.12E.html.
  14. P. Clairambault & P. Dybjer (2011): The biequivalence of locally cartesian closed categories and Martin-Löf type theories. In: Proceedings of the 10th international conference on Typed lambda calculi and applications, TLCA'11. Springer-Verlag, Berlin, Heidelberg, pp. 91–106, doi:10.1007/978-3-642-21691-6_10. Available at http://dl.acm.org/citation.cfm?id=2021953.2021965.
  15. T. Coquand: ForMath: Formalisation of Mathematics research project. http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMathwiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath.
  16. P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D.R. Morrison & E. Witten (1999): Quantum Fields and Strings, A course for mathematicians. Amer. Math. Soc..
  17. D. Fiorenza, C. L. Rogers & U. Schreiber (2013): Higher geometric prequantum theory. http://arxiv.org/abs/1304.0236arXiv:1304.0236.
  18. D. Fiorenza, H. Sati & U. Schreiber (2013): Extended higher cup-product Chern-Simons theories. Journal of Geometry and Physics 74, pp. 130–163, doi:10.1016/j.geomphys.2013.07.011. http://arxiv.org/abs/1207.5449arXiv:1207.5449.
  19. D. Fiorenza & U. Schreiber: -Chern-Simons theory. http://ncatlab.org/schreiber/show/infinity-Chern-Simons+theoryncatlab.org/schreiber/show/infinity-Chern-Simons+theory.
  20. D. Fiorenza, U. Schreiber & J. Stasheff (2012): Čech cocycles for differential characteristic classes. Advances in Theoretical and Mathematical Phyiscs 16(1), pp. 149–250, doi:10.4310/ATMP.2012.v16.n1.a5. http://arxiv.org/abs/1011.4735arXiv:1011.4735.
  21. D. Freed (2002): Dirac charge quantization and generalized differential cohomology. In: Surveys in Differential Geometry 7. Int. Press, pp. 129–194, doi:10.4310/SDG.2002.v7.n1.a6. http://arxiv.org/abs/hep-th/0011220arXiv:hep-th/0011220.
  22. M. Henneaux & C. Teitelboim (1992): Quantization of gauge systems. Princeton University Press.
  23. C. Heunen, N. P. Landsman & B. Spitters (2011): Bohrification. In: H. Halvorson: Deep Beauty. Cambridge University Press, pp. 271–313, doi:10.1017/CBO9780511976971.008. http://arxiv.org/abs/0909.3468arXiv:0909.3468.
  24. M. Hopkins & I. Singer (2005): Quadratic Functions in Geometry, Topology, and M-Theory. J. Differential Geom. 70(3), pp. 329–452. http://arxiv.org/abs/math/0211216arXiv:math/0211216.
  25. I.V. Kanatchikov (2004): Precanonical quantization of Yang-Mills fields and the functional Schroedinger representation. Rept. Math. Phys. 53, pp. 181–193, doi:10.1016/S0034-4877(04)90011-0. http://arxiv.org/abs/hep-th/0301001arXiv:hep-th/0301001.
  26. C. Kapulkin, P. L. Lumsdaine & V. Voevodsky (2012): Univalence in simplicial sets. http://arxiv.org/abs/1203.2553arXiv:1203.2553.
  27. A. Kock (1981): Synthetic differential geometry. London Mathematical Society Lecture Note Series 51. Cambridge University Press, Cambridge, doi:10.1017/CBO9780511550812.
  28. R. Lavendhomme (1996): Basic concepts of synthetic differential geometry. Kluwer Texts in the Mathematical Sciences 13. Kluwer Academic Publishers Group, Dordrecht, doi:10.1007/978-1-4757-4588-7_8. Translated from the 1987 French original, Revised by the author.
  29. W. Lawvere (2007): Axiomatic cohesion. Theory and Applications of Categories 19(3), pp. 41–49. http://www.tac.mta.ca/tac/volumes/19/3/19-03abs.htmlwww.tac.mta.ca/tac/volumes/19/3/19-03abs.html.
  30. E. Lerman (2010): Orbifolds as stacks?. L'Enseign. Math. 56(3–4), pp. 315–363, doi:10.4171/LEM/56-3-4. http://arxiv.org/abs/0806.4160arXiv:0806.4160.
  31. J. Lurie (2009): Higher topos theory. Annals of Mathematics Studies 170. Princeton University Press. http://arxiv.org/abs/math/0608040arXiv:math.CT/0608040.
  32. J. Lurie (2009): On the Classification of Topological Field Theories. Current Developments in Mathematics 2008, pp. 129–280, doi:10.4310/CDM.2008.v2008.n1.a3. http://arxiv.org/abs/0905.0465arXiv:0905.0465.
  33. P. Martin-Löf (1984): Intuitionistic type theory. Studies in Proof Theory 1. Bibliopolis, Naples.
  34. M.Göckeler & T. Schücker (1987): Differential geometry, gauge theories, and gravity. Cambridge monographs on Mathematical Physics. Cambridge University Press, doi:10.1017/CBO9780511628818.
  35. I. Moerdijk & D. Pronk (1997): Orbifolds, sheaves and groupoids. K-theory 12, pp. 3–21, doi:10.1023/A:1007767628271.
  36. I. Moerdijk & G. E. Reyes (1991): Models for smooth infinitesimal analysis. Springer-Verlag, New York, doi:10.1007/978-1-4757-4143-8.
  37. T. Nikolaus, U. Schreiber & D. Stevenson (2014): Principalınfty -bundles – General theory. Journal of Homotopy and Related Structures. http://arxiv.org/abs/1207.0248arXiv:1207.0248.
  38. J. Nuiten (2013): Cohomological quantization of local boundary prequantum field theory. University Utrecht, the Netherlands. http://dspace.library.uu.nl/handle/1874/282756dspace.library.uu.nl/handle/1874/282756.
  39. L. O‘Raifeartaigh & N. Straumann (2000): Gauge Theory: Historical Origins and Some Modern Developments. Rev. Mod. Phys. 72, pp. 1–23, doi:10.1103/RevModPhys.72.1.
  40. The Univalent Foundations Program (2013): Homotopy Type Theory: Univalent Foundations of Mathematics. http://homotopytypetheory.org/book/homotopytypetheory.org/book/.
  41. C. Rogers (2011): Higher Symplectic Geometry. UC Riverside. http://arxiv.org/abs/1106.4068arXiv:1106.4068.
  42. H. Sati & U. Schreiber (2011): Mathematical Foundations of Quantum Field and Perturbative String Theory. Proceedings of symposia in pure mathematics 83. American Mathematical Society, doi:10.1090/pspum/083. http://arxiv.org/abs/1109.0955arXiv:1109.0955.
  43. H. Sati, U. Schreiber & J. Stacheff (2012): Twisted differential String- and Fivebrane-structures. Communications in Mathematical Physics 315(1), pp. 169–213, doi:10.1007/s00220-012-1510-3. http://arxiv.org/abs/0910.4001arXiv:0910.4001.
  44. U. Schreiber (2012): Differential cohomology in a cohesiveınfty -topos. http://arxiv.org/abs/1310.7930arXiv:1310.7930.
  45. U. Schreiber (2012): Twisted smooth cohomology in string theory. ESI Lecture series. http://ncatlab.org/nlab/show/twisted+smooth+cohomology+in+string+theoryncatlab.org/nlab/show/twisted+smooth+cohomology+in+string+theory.
  46. U. Schreiber: -cohesive site. http://ncatlab.org/nlab/show/infinity-cohesive+sitencatlab.org/nlab/show/infinity-cohesive+site.
  47. M. Shulman: Internalizing the External, or The Joys of Codiscreteness. http://golem.ph.utexas.edu/category/2011/11/internalizing_the_external_or.htmlgolem.ph.utexas.edu/category/2011/11/internalizing_the_external_or.html.
  48. M. Shulman: Reflective Subfibrations, Factorization Systems, and Stable Units. http://golem.ph.utexas.edu/category/2011/12/reflective_subfibrations_facto.htmlgolem.ph.utexas.edu/category/2011/12/reflective_subfibrations_facto.html.
  49. M. Shulman (2011): Coq code for cohesive homotopy type theory. https://github.com/mikeshulman/HoTT/tree/modalities/Coq/Subcategoriesgithub.com/mikeshulman/HoTT/tree/modalities/Coq/Subcategories.
  50. M. Shulman (2012): Directed homotopy type theory. http://golem.ph.utexas.edu/category/2012/06/directed_homotopy_type_theory.htmlgolem.ph.utexas.edu/category/2012/06/directed_homotopy_type_theory.html.
  51. M. Shulman (2012): Minicourse on homotopy type theory. http://www.math.ucsd.edu/~mshulman/hottminicourse2012/www.math.ucsd.edu/~mshulman/hottminicourse2012/.
  52. M. Shulman (2012): Univalence for inverse diagrams and homotopy canonicity. http://arxiv.org/abs/1203.3253arXiv:1203.3253.
  53. M. Shulman (2013): The univalence axiom for elegant Reedy presheaves. http://arxiv.org/abs/1307.6248arXiv:1307.6248.
  54. M. Shulman & P. L. Lumsdaine: Higher inductive types. In preparation.
  55. Coq development team: The Coq proof assistant. http://coq.inria.fr/coq.inria.fr/.
  56. V. Voevodsky (2011): Univalent foundations of mathematics. Logic, Language, Information and Computation, doi:10.1007/978-3-642-20920-8_4. http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations.htmlwww.math.ias.edu/~ vladimir/Site3/Univalent_Foundations.html.
  57. J. Wang (2011): The moduli stack of G-bundles. http://arxiv.org/abs/1104.4828arXiv:1104.4828.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org