References

  1. Samson Abramsky & Achim Jung (1994): Domain Theory. In: Handbook of Logic in Computer Science III. Clarendon Press, pp. 1–168. Corrected and expanded version available online.
  2. Huzihiro Araki (1999): Mathematical Theory of Quantum Fields. International Series of Monographs on Physics 101. Oxford University Press. Originally published in Japanese asıtshape Ryoshiba no Suri (Iwanami Shoten, 1993).
  3. Ola Bratteli & Derek W. Robinson (1987/1997): Operator Algebras and Quantum Statistical Mechanics (2 volumes), second edition, Texts and Monographs in Physics. Springer, doi:10.1007/978-3-662-02520-8.
  4. Nathanial P. Brown & Narutaka Ozawa (2008): C^*-Algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics 88. American Mathematical Society.
  5. Giulio Chiribella, Alessandro Toigo & Veronica Umanità (2013): Normal Completely Positive Maps on the Space of Quantum Operations. Open Systems & Information Dynamics 20(1), doi:10.1142/S1230161213500030.
  6. Kenta Cho (2014): Semantics for a Quantum Programming Language by Operator Algebras. The University of Tokyo. Available at http://www-mmm.is.s.u-tokyo.ac.jp/~ckn/papers/master-thesis.pdf.
  7. John B. Conway (2000): A Course in Operator Theory. Graduate Studies in Mathematics 21. American Mathematical Society.
  8. Giacomo Mauro D'Ariano, Dennis Kretschmann, Dirk Schlingemann & Reinhard F. Werner (2007): Reexamination of quantum bit commitment: The possible and the impossible. Phys. Rev. A 76(032328), doi:10.1103/PhysRevA.76.032328.
  9. Ellie D'Hondt & Prakash Panangaden (2006): Quantum weakest preconditions. Mathematical Structures in Computer Science 16, pp. 429–451, doi:10.1017/S0960129506005251.
  10. D. H. Fremlin (2010): Measure Theory, Volume 2, second edition. Torres Fremlin.
  11. Robert Furber & Bart Jacobs (2013): From Kleisli Categories to Commutative C^*-Algebras: Probabilistic Gelfand Duality. In: Algebra and Coalgebra in Computer Science (CALCO) 2013, Lecture Notes in Computer Science 8089. Springer, pp. 141–157, doi:10.1007/978-3-642-40206-7_12.
  12. Simon J. Gay (2006): Quantum programming languages: survey and bibliography. Mathematical Structures in Computer Science 16, pp. 581–600, doi:10.1017/S0960129506005378.
  13. Rudolf Haag (1996): Local Quantum Physics: Fields, Particles, Algebras, second edition, Theoretical and Mathematical Physics. Springer, doi:10.1007/978-3-642-61458-3.
  14. Rudolf Haag & Daniel Kastler (1964): An Algebraic Approach to Quantum Field Theory. Journal of Mathematical Physics 5(7), pp. 848–861, doi:10.1063/1.1704187.
  15. Masahito Hasegawa (1999): Models of Sharing Graphs: A Categorical Semantics of let and letrec. Distinguished Dissertations. Springer, doi:10.1007/978-1-4471-0865-8.
  16. Ichiro Hasuo & Naohiko Hoshino (2011): Semantics of Higher-Order Quantum Computation via Geometry of Interaction. In: The 26th Annual IEEE Symposium on Logic in Computer Science (LICS 2011), doi:10.1109/LICS.2011.26.
  17. Teiko Heinosaari & Mário Ziman (2012): The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement. Cambridge University Press.
  18. Naohiko Hoshino, Koko Muroya & Ichiro Hasuo (2014): Memoryful Geometry of Interaction: From Coalgebraic Components to Algebraic Effects. In: Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (CSL-LICS 2014), doi:10.1145/2603088.2603124. Extended version with appendix is available at the first author's website.
  19. Bart Jacobs (2013): On Block Structures in Quantum Computation. Electronic Notes in Theoretical Computer Science 298, pp. 233–255, doi:10.1016/j.entcs.2013.09.016.
  20. Michael Keyl (2002): Fundamentals of quantum information theory. Physics Reports 369(5), pp. 431–548, doi:10.1016/S0370-1573(02)00266-1.
  21. Andre Kornell (2012): Quantum Collections. ArXiv:1202.2994v1 [math.OA].
  22. Nicolaas P. Landsman (2009): Algebraic Quantum Mechanics. In: Compendium of Quantum Physics. Springer, pp. 6–10, doi:10.1007/978-3-540-70626-7_3.
  23. Saunders Mac Lane (1998): Categories for the Working Mathematician, second edition, Graduate Texts in Mathematics 5. Springer.
  24. Octavio Malherbe, Philip Scott & Peter Selinger (2013): Presheaf Models of Quantum Computation: An Outline. In: Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky, Lecture Notes in Computer Science 7860. Springer, pp. 178–194, doi:10.1007/978-3-642-38164-5_13.
  25. Ralf Meyer (2008): Categorical aspects of bivariant K-theory. In: K-Theory and Noncommutative Geometry, EMS Series of Congress Reports. European Mathematical Society, pp. 1–39, doi:10.4171/060-1/1. ArXiv:math/0702145 [math.KT].
  26. Francis J. Murray & John von Neumann (1936): On Rings of Operators. Annals of Mathematics 37(1), pp. 116–229, doi:10.2307/1968693.
  27. Francis J. Murray & John von Neumann (1937): On Rings of Operators. II. Transactions of the American Mathematical Society 41(2), pp. 208–248, doi:10.1090/S0002-9947-1937-1501899-4.
  28. Francis J. Murray & John von Neumann (1943): On Rings of Operators. IV. Annals of Mathematics 44(4), pp. 716–808, doi:10.2307/1969107.
  29. John von Neumann (1940): On Rings of Operators. III. Annals of Mathematics 41(1), pp. 94–161, doi:10.2307/1968823.
  30. John von Neumann (1949): On Rings of Operators. Reduction Theory. Annals of Mathematics 50(2), pp. 401–485, doi:10.2307/1969463.
  31. John von Neumann (1955): Mathematical Foundations of Quantum Mechanics. Princeton University Press. Originally published in German asıtshape Mathematische Grundlagen der Quantenmechanik (Springer, 1932).
  32. Michael A. Nielsen & Isaac L. Chuang (2000): Quantum Computation and Quantum Information. Cambridge University Press.
  33. Michele Pagani, Peter Selinger & Benoît Valiron (2014): Applying Quantitative Semantics to Higher-order Quantum Computing. In: The 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2014), doi:10.1145/2535838.2535879.
  34. Miklós Rédei (1996): Why John von Neumann did not Like the Hilbert Space formalism of quantum mechanics (and what he liked instead). Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27(4), pp. 493–510, doi:10.1016/S1355-2198(96)00017-2.
  35. Mathys Rennela (2013): On operator algebras in quantum computation. Université Paris 7 Denis Diderot. Available at http://www.cs.ru.nl/~mathysr/papers/masterthesis.pdf.
  36. Mathys Rennela (2014): Towards a Quantum Domain Theory: Order-Enrichment and Fixpoints in W*-Algebras. In: The Thirtieth Conference on the Mathematical Foundations of Programming Semantics (MFPS XXX). To appear.
  37. Raymond A. Ryan (2002): Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer, doi:10.1007/978-1-4471-3903-4.
  38. Shôichirô Sakai (1998): C^*-Algebras and W^*-Algebras. Classics in Mathematics. Springer. Reprint of the 1971 Edition.
  39. Peter Selinger (2004): Towards a quantum programming language. Mathematical Structures in Computer Science 14, pp. 527–586, doi:10.1017/S0960129504004256.
  40. Peter Selinger & Benoît Valiron (2006): A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science 16, pp. 527–552, doi:10.1017/S0960129506005238.
  41. Peter Selinger & Benoît Valiron (2008): On a Fully Abstract Model for a Quantum Linear Functional Language: (Extended Abstract). Electronic Notes in Theoretical Computer Science 210(0), pp. 123–137, doi:10.1016/j.entcs.2008.04.022.
  42. Peter Selinger & Benoît Valiron (2009): Quantum lambda calculus. In: Simon Gay & Ian Mackie: Semantic Techniques in Quantum Computation. Cambridge University Press, pp. 135–172, doi:10.1017/CBO9781139193313.005.
  43. Masamichi Takesaki (2001/2003): Theory of Operator Algebras (3 volumes). Encyclopaedia of Mathematical Sciences 124–125, 127. Springer.
  44. Benoît Valiron (2013): Quantum Computation: From a Programmer's Perspective. New Generation Computing 31(1), pp. 1–26, doi:10.1007/s00354-012-0120-0.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org