1. Samson Abramsky & Bob Coecke (2004): A categorical semantics of quantum protocols. University Computing 415(RR-04-02), pp. 21, doi:10.1109/LICS.2004.1. Available at
  2. M. Backens (2013): The ZX-calculus is complete for stabilizer quantum mechanics. ArXiv e-prints, doi:10.1088/1367-2630/16/9/093021.
  3. Jonathan Barrett (2007): Information processing in generalized probabilistic theories. Phys. Rev. A 75, pp. 032304, doi:10.1103/PhysRevA.75.032304.
  4. S. D. Bartlett, T. Rudolph & R. W. Spekkens (2012): Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction. Phys. Rev. A 86(1):012103, doi:10.1103/PhysRevA.86.012103.
  5. J.-L. Brylinski & R. Brylinski (2001): Universal quantum gates. eprint arXiv:quant-ph/0108062.
  6. B. Coecke, R. Duncan, A. Kissinger & Q. Wang (2012): Strong Complementarity and Non-locality in Categorical Quantum Mechanics. ArXiv e-prints, doi:10.1109/LICS.2012.35.
  7. B. Coecke & S. Perdrix (2010): Environment and classical channels in categorical quantum mechanics. ArXiv e-prints, doi:10.2168/LMCS-8(4:14)2012.
  8. Bob Coecke & Ross Duncan (2008): Interacting quantum observables, doi:10.1007/978-3-540-70583-3/25. Extended version: arXiv:quant-ph/09064725.
  9. Bob Coecke & Ross Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13(4), pp. 043016, doi:10.1088/1367-2630/13/4/043016. Available at
  10. Bob Coecke, Bill Edwards & Robert W. Spekkens (2011): Phase groups and the origin of non-locality for qubits. Electronic Notes in Theoretical Computer Science 270(2), pp. 15–36, doi:10.1016/j.entcs.2011.01.021. arXiv:1003.5005.
  11. Bob Coecke & Eric Oliver Paquette (2006): POVMs and Naimarks theorem without sums. Electronic Notes in Theoretical Computer Science 210, pp. 15–31, doi:10.1016/j.entcs.2008.04.015. Available at
  12. Bob Coecke & Dusko Pavlovic (2007): Quantum measurements without sums. In: G. Chen, L. Kauffman & S. Lamonaco: Mathematics of Quantum Computing and Technology. Taylor and Francis, pp. 567–604, doi:10.1201/9781584889007.ch16. \voidb@x arXiv:quant-ph/0608035.
  13. Bob Coecke, Dusko Pavlovic & Jamie Vicary (2008): A new description of orthogonal bases. ENTCS, doi:10.1017/S0960129512000047. Available at
  14. Bob Coecke, Simon Perdrix & Eric Oliver Paquette (2008): Bases in Diagrammatic Quantum Protocols. Electronic Notes in Theoretical Computer Science 218(0), pp. 131 – 152, doi:10.1016/j.entcs.2008.10.009. Available at
  15. R. Duncan & S. Perdrix (2013): Pivoting makes the ZX-calculus complete for real stabilizers. ArXiv e-prints.
  16. Ross Duncan & Simon Perdrix (2010): Rewriting measurement-based quantum computations with generalised flow, pp. 285–296, doi:10.1007/978-3-642-14162-1/24. Available at
  17. Bill Edwards (2010): PHASE GROUPS AND LOCAL HIDDEN VARIABLES. Technical Report RR-10-15.
  18. A. J. P. Garner, O. C. O. Dahlsten, Y. Nakata, M. Murao & V. Vedral (2013): A general framework for phase and interference. ArXiv e-prints, doi:10.1088/1367-2630/15/9/093044.
  19. V. Gheorghiu (2011): Standard Form of Qudit Stabilizer Groups. ArXiv e-prints, doi:10.1016/j.physleta.2013.12.009.
  20. Daniel Gottesman (1997): Stabilizer Codes and Quantum Error Correction. Energy 2008, pp. 114. Available at
  21. Daniel Gottesman (1999): Fault tolerant quantum computation with higher dimensional systems. Chaos Solitons Fractals 10, pp. 1749–1758, doi:10.1016/S0960-0779(98)00218-5.
  22. D. Gross (2006): Hudson's theorem for finite-dimensional quantum systems. Journal of Mathematical Physics 47(12), pp. 122107, doi:10.1063/1.2393152.
  23. Clare Horsman (2011): Quantum picturalism for topological cluster-state computing. New Journal of Physics 13(9), pp. 18, doi:10.1088/1367-2630/13/9/095011. Available at
  24. Erik Hostens, Jeroen Dehaene & Bart De Moor (2005): Stabilizer states and Clifford operations for systems of arbitrary dimensions and modular arithmetic. Phys. Rev. A 71, pp. 042315, doi:10.1103/PhysRevA.71.042315.
  25. G M Kelly & M L Laplaza (1980): Coherence for compact closed categories. Journal of Pure and Applied Algebra 19(1), pp. 193–213. Available at
  26. Aleks Kissinger (2009): Exploring a Quantum Theory with Graph Rewriting and Computer Algebra. Available at
  27. S Mac Lane (1998): Categories for the working mathematician 5. Springer. Available at
  28. A. Muthukrishnan & C. R. Stroud, Jr. (2000): Multivalued logic gates for quantum computation. Phys. Rev. A 62(5):052309, doi:10.1103/PhysRevA.62.052309.
  29. Arun Kumar Pati & Samuel L Braunstein (2000): Impossibility of deleting an unknown quantum state.. Nature 404(6774), pp. 164–165, doi:10.1038/404130b0. Available at
  30. O. Schreiber & R. W. Spekkens (2012): Reconstruction of the stabilizer formalism for qutrits from a statistical theory of trits with an epistemic restriction. to be published.
  31. P Selinger (2007): Dagger compact closed categories and completely positive maps (extended abstract). Electronic Notes in Theoretical Computer Science 170, pp. 139�163, doi:10.1016/j.entcs.2006.12.018. Available at
  32. Peter Selinger (2009): A survey of graphical languages for monoidal categories. New Structures for Physics, pp. 1–63, doi:10.1007/978-3-642-12821-9/4. Available at
  33. Robert W Spekkens (2007): Evidence for the epistemic view of quantum states: A toy theory. Physical Review A 75(3):032110, doi:10.1103/PhysRevA.75.032110.
  34. S. J. van Enk (2007): A Toy Model for Quantum Mechanics. Foundations of Physics 37, pp. 1447–1460, doi:10.1007/s10701-007-9171-3.
  35. Q. Wang & X. Bian (2014): Qutrit Dichromatic Calculus and Its Universality. ArXiv e-prints.
  36. W. K. Wootters & W. H. Zurek (1982): A single quantum cannot be cloned. Nature 299(5886), pp. 802–803, doi:10.1038/299802a0.

Comments and questions to:
For website issues: