1. F. Borceux (1994): Handbook of Categorical Algebra. Encyclopedia of Mathematics 50, 51 and 52. Cambridge Univ. Press, doi:10.1017/CBO9780511525858.
  2. P. Busch & J. Singh (1998): Lüders theorem for unsharp quantum measurements. Phys. Letters A 249, pp. 10–12, doi:10.1016/S0375-9601(98)00704-X.
  3. A. Carboni, S. Lack & R. F. C. Walters (1993): Introduction to extensive and distributive categories. Journal of Pure and Applied Algebra 84(2), pp. 145–158, doi:10.1016/0022-4049(93)90035-R.
  4. K. Cho (2015): Total and Partial Computation in Categorical Quantum Foundations. In: QPL 2015. To appear.
  5. R. Cignoli, I. D'Ottaviano & D. Mundici (2000): Algebraic foundations of many-valued reasoning. Trends in Logic 7. Springer, doi:10.1007/978-94-015-9480-6.
  6. R. Furber & B. Jacobs (2013): From Kleisli categories to commutative C^*-algebras: Probabilistic Gelfand duality. In: Algebra and Coalgebra in Computer Science. Springer, pp. 141–157, doi:10.1007/978-3-642-40206-7_12.
  7. M. Grandis (2012): Homological Algebra: The Interplay of Homology with Distributive Lattices and Orthodox Semigroups. World Scientific, Singapore, doi:10.1142/8483.
  8. S. Gudder & G. Nagy (2001): Sequential quantum measurements. Journal of Mathematical Physics 42, pp. 5212–5222, doi:10.1063/1.1407837.
  9. P. Halmos (1957): Introduction to Hilbert space and the theory of spectral multiplicity. Chelsea New York.
  10. B. Jacobs (1999): Categorical logic and type theory. North Holland, Amsterdam.
  11. B. Jacobs (2013): Measurable spaces and their effect logic. In: Logic in Computer Science. IEEE. Computer Science Press, doi:10.1109/LICS.2013.13.
  12. B. Jacobs (2015): New directions in categorical logic, for classical, probabilistic and quantum Logic. Logical Methods in Computer Science. To appear. .11emplus.33emminus.07emarXiv:1205.3940v4 [math.LO].
  13. Z. Janelidze (2014): On the Form of Subobjects in Semi-Abelian and Regular Protomodular Categories. Appl. Categorical Struct. 22(5–6), pp. 755–766, doi:10.1007/s10485-013-9355-2.
  14. P. Johnstone (1982): Stone spaces. Cambridge Studies in Advanced Mathematics 3. Cambridge Univ. Press.
  15. S. Mac Lane (1950): Duality for groups. Bull. Amer. Math. Soc. 56, pp. 485–516, doi:10.1090/S0002-9904-1950-09427-0.
  16. F. J. Murray & J. v. Neumann (1936): On rings of operators. Annals of Mathematics, pp. 116–229, doi:10.2307/1968693.
  17. M. A. Nielsen & I. L. Chuang (2010): Quantum computation and quantum information. Cambridge university press, doi:10.1017/CBO9780511976667.
  18. A. D. Nola & I. Leuştean (2014): Łukasiewicz logic and Riesz spaces. Soft Computing 18(12), pp. 2349–2363, doi:10.1007/s00500-014-1348-z.
  19. V. Paulsen (2002): Completely bounded maps and operator algebras 78. Cambridge University Press.
  20. S. Sakai (1971): C*-algebras and W*-algebras 60. Springer Science & Business Media, doi:10.1007/978-3-642-61993-9.
  21. T. Weighill (2014): Bifibrational duality in non-abelian algebra and the theory of databases. MSc Thesis.
  22. B. Westerbaan & A. Westerbaan (2015): A universal property of sequential measurement. Preprint is available at
  23. K. Yosida (1941): On vector lattice with a unit. Proceedings of the Imperial Academy 17(5), pp. 121–124, doi:10.3792/pia/1195578821.

Comments and questions to:
For website issues: