1. J. Bub (2007): Quantum Probabilities as Degrees of Belief. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38(2), pp. 232 – 254, doi:10.1016/j.shpsb.2006.09.002.
  2. P. Chaput, V. Danos, P. Panangaden & G. Plotkin (2009): Approximating Markov Processes by Averaging. In: S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas & W. Thomas: Automata, Languages and Programming, Lecture Notes in Computer Science 5556. Springer Berlin Heidelberg, pp. 127–138, doi:10.1007/978-3-642-02930-1_11.
  3. B. Coecke & R. Spekkens (2012): Picturing classical and quantum Bayesian inference. Synthese 186(3), pp. 651–696, doi:10.1007/s11229-011-9917-5.
  4. A. Elitzur & L. Vaidman (1993): Quantum mechanical interaction-free measurements. Foundations of Physics 23(7), pp. 987–997, doi:10.1007/BF00736012.
  5. R. Furber & B. Jacobs (2013): From Kleisli Categories to Commutative C^*-Algebras: Probabilistic Gelfand Duality. In: R. Heckel & S. Milius: Algebra and Coalgebra in Computer Science, Lecture Notes in Computer Science 8089. Springer Berlin Heidelberg, pp. 141–157, doi:10.1007/978-3-642-40206-7_12.
  6. B. Jacobs (2013): On Block Structures in Quantum Computation. Electronic Notes in Theoretical Computer Science 298(0), pp. 233 – 255, doi:10.1016/j.entcs.2013.09.016. Proceedings of the Twenty-ninth Conference on the Mathematical Foundations of Programming Semantics, {MFPS} {XXIX}.
  7. B. Jacobs (2015): New Directions in Categorical Logic for Classical, Probabilistic and Quantum Logic. Logical Methods in Computer Science 11(3).
  8. B. Jacobs & J. Mandemaker (2012): The Expectation Monad in Quantum Foundations. In: B. Jacobs, P. Selinger & B. Spitters: Quantum Physics and Logic (QPL) 2011, Elect. Proc. in Theor. Comp. Sci. 95, pp. 143–182, doi:10.4204/EPTCS.95.12.
  9. B. Jacobs & J. Mandemaker (2016, to appear): Relating Operator Spaces via Adjunctions. In: J. Chubb Reimann, V. Harizanov & A. Eskandarian: Logic and Algebraic Structures in Quantum Computing and Information, Lect. Notes in Logic. Cambridge Univ. Press. Available at
  10. M. Leifer & R. Spekkens (2013): Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88(5), pp. 052130.
  11. B. Russo & H.A. Dye (1966): A Note on Unitary Operators in C*-algebras.. Duke Math. J. 33, pp. 413–416, doi:10.1215/S0012-7094-66-03346-1.
  12. Masamichi Takesaki (2002): Theory of Operator Algebra, volume I. Encyclopedia of Mathematical Sciences 124. Springer Verlag, doi:10.1007/978-1-4612-6188-9.
  13. Masamichi Takesaki (2003): Theory of Operator Algebras, volume III. Encyclopedia of Mathematical Sciences 127. Springer Verlag, doi:10.1007/978-3-662-10453-8.
  14. Jun Tomiyama (1957): On the Projection of Norm One in W*-algebras. Proceedings of the Japan Academy 33(10), pp. 608–612, doi:10.3792/pja/1195524885.

Comments and questions to:
For website issues: