References

  1. Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal & Shane Mansfield (2015): Contextuality, Cohomology and Paradox. arXiv preprint arXiv:1502.03097.
  2. Samson Abramsky & Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics 13(11), pp. 113036, doi:10.1088/1367-2630/13/11/113036.
  3. Samson Abramsky & Bob Coecke (2008): Categorical quantum mechanics. Handbook of quantum logic and quantum structures: quantum logic, pp. 261–324, doi:10.1016/B978-0-444-52869-8.50010-4.
  4. Miriam Backens (2014): The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of Physics 16(9), pp. 093021, doi:10.1088/1367-2630/16/9/093021.
  5. J. Barrett, L. Hardy & A. Kent (2005): No signaling and quantum key distribution. Phys. Rev. Lett., doi:10.1103/PhysRevLett.95.010503.
  6. Jonathan Barrett (2007): Information processing in generalized probabilistic theories. Physical Review A 75(3), pp. 032304, doi:10.1103/PhysRevA.75.032304.
  7. J. S. Bell (1964): On the Einstein-Podolsky-Rosen paradox. Physics 1, pp. 195–200.
  8. B. Coecke & A. Kissinger (2015 (to appear)): Picturing Quantum Processes. Cambridge University Press.
  9. B. Coecke, E. O. Paquette & D. Pavlovic (2008): Classical and quantum structuralism. Semantic techniques for quantum computation, pp. 43. Available at http://arxiv.org/abs/0904.1997, doi:10.1017/CBO9781139193313.003.
  10. Bob Coecke & Ross Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13(4), pp. 043016, doi:10.1088/1367-2630/13/4/043016.
  11. Bob Coecke, Ross Duncan, Aleks Kissinger & Quanlong Wang (2012): Strong complementarity and non-locality in categorical quantum mechanics. In: Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science. IEEE Computer Society, pp. 245–254, doi:10.1109/LICS.2012.35.
  12. Bob Coecke, Bill Edwards & Robert W Spekkens (2011): Phase groups and the origin of non-locality for qubits. Electronic Notes in Theoretical Computer Science 270(2), pp. 15–36, doi:10.1016/j.entcs.2011.01.021.
  13. Bob Coecke, Dusko Pavlovic & Jamie Vicary (2013): A new description of orthogonal bases. Mathematical Structures in Computer Science 23(03), pp. 555–567, doi:10.1017/S0960129512000047.
  14. Artur K. Ekert (1991): Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, pp. 661–663, doi:10.1103/PhysRevLett.67.661.
  15. S. Gogioso & W. Zeng (2015): Fourier transforms from strongly complementary observables. arXiv preprint arXiv:1501.04995.
  16. Stefano Gogioso (2015): Categorical Semantics for Schrodigner's Equation. arXiv preprint arXiv:1501.06489.
  17. C. Heunen & J. Vicary (2015 (to appear)): Categories for Quantum Theory : An Introduction.
  18. Seung-Woo Lee Jinhyoung Lee & M. S. Kim (2006): Greenberger-Horne-Zeilinger nonlocality in arbitrary even dimensions. Physical Review A 73. Available at arXiv:quant-ph/0408072, doi:10.1103/PhysRevA.73.032316.
  19. A. Kissinger (2012): Pictures of Processes: Automated Graph Rewriting for Monoidal Categories and Applications to Quantum Computing. Available at http://arxiv.org/abs/1203.0202.
  20. F-G. Deng L. Xiao, G. L. Long & J-W Pan (2004): Efficient multiparty quantum-secret-sharing schemes. Physical Review A, doi:10.1103/PhysRevA.69.052307.
  21. V. Buzek M. Hillery & A. Berthiaume (1999): Quantum Secret Sharing. Physical Review A, doi:10.1103/PhysRevA.59.1829.
  22. N David Mermin (1990): Quantum mysteries revisited. Am. J. Phys 58(8), pp. 731–734, doi:10.1119/1.16503.
  23. Serge Massar Nicolas Cerf & Stefano Pironio (2002): Greenberger-Horne-Zeilinger paradoxes for many qudits. Physical Review Letters 89. Available at arXiv:quant-ph/0107031, doi:10.1103/PhysRevLett.110.100403.
  24. André Ranchin (2014): Depicting qudit quantum mechanics and mutually unbiased qudit theories. arXiv preprint arXiv:1404.1288, doi:10.4204/EPTCS.172.6.
  25. Junghee Ryu, Changhyoup Lee, Zhi Yin, Ramij Rahaman, Dimitris G Angelakis, Jinhyoung Lee & Marek Żukowski (2014): Multisetting Greenberger-Horne-Zeilinger theorem. Physical Review A 89(2), pp. 024103, doi:10.1103/PhysRevA.89.024103.
  26. Peter Selinger (2011): A survey of graphical languages for monoidal categories. In: New structures for physics. Springer, pp. 289–355, doi:10.1007/978-3-642-12821-94.
  27. Weidong Tang, Sixia Yu & CH Oh (2013): Greenberger-Horne-Zeilinger paradoxes from qudit graph states. Physical review letters 110(10), pp. 100403, doi:10.1103/PhysRevLett.110.100403.
  28. V. N. Zamdzhiev (2012): An Abstract Approach towards Quantum Secret Sharing. Available at http://www.cs.ox.ac.uk/people/bob.coecke/VladimirZamdzhievThesis.pdf.
  29. M. Zukowski & D. Kaszlikowski (1999): Greenberger-Horne-Zeilinger paradoxes with symmetric multiport beam splitters. Physical Review A. Available at arxiv:quant-ph/9911039, doi:10.1103/PhysRevA.59.3200.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org