References

  1. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Logic in Computer Science 19. IEEE Computer Society, pp. 415–425, doi:10.1109/lics.2004.1319636.
  2. J.C. Baez (2006): The structural foundations of quantum gravity, chapter Quantum quandaries: a category-theoretic perspective, pp. 240–266. Oxford University Press, doi:10.1093/acprof:oso/9780199269693.003.0008.
  3. J.C. Baez & A.S. Crans (2004): Higher-dimensional algebra VI: Lie 2-algebras. Theory and Applications of Categories [electronic only] 12, pp. 492–538. Available at http://eudml.org/doc/124264.
  4. J.C. Baez & A.D. Lauda (2004): Higher-dimensional algebra. V: 2-Groups.. Theory and Applications of Categories [electronic only] 12, pp. 423–491. Available at http://eudml.org/doc/124217.
  5. H. Barnum, J. Barrett, M. Leifer & A. Wilce (2007): Generalized No-broadcasting theorem. Physical Review Letters 99(24), pp. 1–4, doi:10.1103/PhysRevLett.99.240501.
  6. H. Barnum, C.M. Caves, C. a. Fuchs, R. Jozsa & B. Schumacher (1996): Noncommuting Mixed States Cannot Be Broadcast. Phys. Rev. Lett. 76(2818), doi:10.1103/PhysRevLett.76.2818.
  7. F. Bonchi, P. Sobociński & F. Zanasi (2014): A Categorical Semantics of Signal Flow Graphs. In: CONCUR 2014, Lecture Notes in Computer Science 8704. Springer, pp. 435–450, doi:10.1007/978-3-662-44584-6_30.
  8. R. Brown (1999): Groupoids and crossed objects in algebraic topology. Homology, Homotopy and Applications 1(1), pp. 1–78, doi:10.4310/hha.1999.v1.n1.a1.
  9. C. Butz (1998): Regular Categories and Regular Logic. BRICS Lecture Series LS-98-2, pp. 46. Available at http://www.brics.dk/LS/98/2/BRICS-LS-98-2.pdf.
  10. A. Carboni, M.C. Pedicchio & N. Pirovano (1991): Internal Graphs and Internal Groupoids in Mal'cev Categories. Category Theory 1991: Proceedings of an International Summer Category Theory, doi:10.1007/BFb0084207.
  11. A. Carboni & R.F.C. Walters (1987): Cartesian bicategories I. Journal of Pure and Applied Algebra 49, pp. 11–32, doi:10.1016/0022-4049(87)90121-6.
  12. B. Coecke & R. Duncan (2011): Interacting Quantum Observables. New Journal of Physics 13(4), pp. 043016, doi:10.1007/978-3-540-70583-3_25.
  13. B. Coecke & R. Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13(4), pp. 043016, doi:10.1088/1367-2630/13/4/043016.
  14. B. Coecke & B. Edwards (2011): Toy quantum categories. In: Quantum Physics and Logic 2008, ENTCS 270, pp. 29–40, doi:10.1016/j.entcs.2011.01.004.
  15. B. Coecke, C. Heunen & A. Kissinger (2013): Compositional Quantum Logic. In: B. Coecke, L. Ong & P. Panangaden: Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky, Lecture Notes in Computer Science 7860. Springer Berlin Heidelberg, pp. 21–36, doi:10.1007/978-3-642-38164-5_3.
  16. B. Coecke, C. Heunen & A. Kissinger (2014): Categories of quantum and classical channels. Quantum Information Processing, pp. 1–31, doi:10.1007/s11128-014-0837-4.
  17. P. Freyd & A. Scedrov (1990): Categories, allegories 39. Elsevier, doi:10.5860/choice.29-2765.
  18. M. Gachechiladze (2014): On Categorical Characterizations of No-signaling Theories. MSc Thesis.
  19. M. Gran (1999): Internal categories in Mal’cev categories. Journal of Pure and Applied Algebra 143(1-3), pp. 221–229, doi:10.1016/S0022-4049(98)00112-1.
  20. T. Heinosaari & M. Ziman (2012): The mathematical language of quantum theory. Cambridge University Press, doi:10.1017/cbo9781139031103.
  21. C. Heunen, I. Contreras & A. S. Cattaneo (2013): Relative Frobenius algebras are groupoids. Journal of Pure and Applied Algebra 217(1), pp. 114 – 124, doi:10.1016/j.jpaa.2012.04.002.
  22. C. Heunen & A. Kissinger (2015): Can quantum theory be characterized by information-theoretic constraints?. in preparation.
  23. C. Heunen, A. Kissinger & J. Vicary (2015): Faces of complete positivity. in preparation.
  24. H. Maassen (2010): Quantum Information, Computation and Cryptography, chapter Quantum Probability and Quantum Information, pp. 65–108, Lecture Notes in Physics 808. Springer, doi:10.1007/978-3-642-11914-9_3.
  25. J. C. Morton (2011): Two-vector spaces and groupoids. Applied Categorical Structures 19(4), pp. 659–707, doi:10.1007/s10485-010-9225-0.
  26. B. Noohi (2007): Notes on 2-groupoids, 2-groups and crossed modules. Homology, Homotopy and Applications 9(1), pp. 75–106, doi:10.4310/HHA.2007.v9.n1.a3.
  27. P. Selinger (2009): A survey of graphical languages for monoidal categories. In: New Structures for Physics, Lecture Notes in Physics. Springer, pp. 289–355, doi:10.1007/978-3-642-12821-9_4.
  28. P. Selinger (2012): Finite dimensional Hilbert spaces are complete for dagger compact closed categories. Logical Methods in Computer Science 8(3), pp. 6, doi:10.2168/lmcs-8(3:6)2012.
  29. C.E. Shannon (1943): Analogue of the Vernam System for Continuous Time Series. Memorandum MM 43-110-44, Bell Laboraties, doi:10.1109/9780470544242.ch3.
  30. M. Stay & J. Vicary (2013): Bicategorical semantics for nondeterministic computation. Electronic Notes in Theoretical Computer Science 298, pp. 367–382, doi:10.1016/j.entcs.2013.09.022.
  31. J. Vicary (2011): Categorical formulation of finite-dimensional quantum algebras. Communications in Mathematical Physics 304(3), pp. 765–796, doi:10.1007/s00220-010-1138-0.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org