References

  1. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425, doi:10.1109/LICS.2004.1319636.
  2. S. Abramsky & B. Coecke (2008): Categorical Quantum Mechanics. In: K. Engesser, D. M. Gabbay & D. Lehmann: Handbook of Quantum Logic and Quantum Structures: Quantum Logic. Elsevier, pp. 261–324.
  3. H. Barnum, J. Barrett, M. Krumm & M. P. Müller (2015): Entropy, majorization and thermodynamics in general probabilistic theories. arXiv:1508.03107.
  4. H. Barnum, J. Barrett, M. Leifer & A. Wilce (2007): Generalized No-Broadcasting Theorem. Phys. Rev. Lett. 99, pp. 240501, doi:10.1103/PhysRevLett.99.240501.
  5. H. Barnum, J. Barrett, L. Orloff Clark, M. Leifer, R. Spekkens, N. Stepanik, A. Wilce & R. Wilke (2010): Entropy and information causality in general probabilistic theories. New Journal of Physics 12(3), pp. 033024, doi:10.1088/1367-2630/12/3/033024.
  6. H. Barnum, C. P. Gaebler & A. Wilce (2013): Ensemble Steering, Weak Self-Duality, and the Structure of Probabilistic Theories. Foundations of Physics 43(12), pp. 1411–1427, doi:10.1007/s10701-013-9752-2.
  7. H. Barnum, M. P. Müller & C. Ududec (2014): Higher-order interference and single-system postulates characterizing quantum theory. New Journal of Physics 16(12), pp. 123029, doi:10.1088/1367-2630/16/12/123029.
  8. H. Barnum & A. Wilce (2011): Information Processing in Convex Operational Theories. Electronic Notes in Theoretical Computer Science 270(1), pp. 3–15, doi:10.1016/j.entcs.2011.01.002. Proceedings of the Joint 5th International Workshop on Quantum Physics and Logic and 4th Workshop on Developments in Computational Models (QPL/DCM 2008).
  9. J. Barrett (2007): Information processing in generalized probabilistic theories. Phys. Rev. A 75, pp. 032304, doi:10.1103/PhysRevA.75.032304.
  10. G. Birkhoff (1946): Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser. A 5, pp. 147–151.
  11. P. Bocchieri & A. Loinger (1959): Ergodic Foundation of Quantum Statistical Mechanics. Phys. Rev. 114, pp. 948–951, doi:10.1103/PhysRev.114.948.
  12. F. G. S. L. Brandão & M. Cramer (2015): Equivalence of Statistical Mechanical Ensembles for Non-Critical Quantum Systems. arXiv:1502.03263.
  13. F. G. S. L. Brandão, M. Horodecki, N. Ng, J. Oppenheim & S. Wehner (2015): The second laws of quantum thermodynamics. Proceedings of the National Academy of Sciences 112(11), pp. 3275–3279, doi:10.1073/pnas.1411728112.
  14. G. Chiribella (2014): Dilation of states and processes in operational-probabilistic theories. In: B. Coecke, I. Hasuo & P. Panangaden: Proceedings 11th workshop on Quantum Physics and Logic, Kyoto, Japan, 4-6th June 2014, Electronic Proceedings in Theoretical Computer Science 172. Open Publishing Association, pp. 1–14, doi:10.4204/EPTCS.172.1.
  15. G. Chiribella, G. M. D'Ariano & P. Perinotti (2010): Probabilistic theories with purification. Phys. Rev. A 81, pp. 062348, doi:10.1103/PhysRevA.81.062348.
  16. G. Chiribella, G. M. D'Ariano & P. Perinotti (2011): Informational derivation of quantum theory. Phys. Rev. A 84, pp. 012311, doi:10.1103/PhysRevA.84.012311.
  17. G. Chiribella, G. M. D'Ariano & P. Perinotti (2012): Quantum theory, namely the pure and reversible theory of information. Entropy 14(10), pp. 1877–1893, doi:10.3390/e14101877.
  18. G. Chiribella, G. M. D'Ariano & P. Perinotti (2016): Quantum from principles. In: G. Chiribella & R. W. Spekkens: Quantum Theory: Informational Foundations and Foils. Springer Netherlands, Dordrecht, pp. 171–222, doi:10.1007/978-94-017-7303-4.
  19. G. Chiribella & C. M. Scandolo: Towards an axiomatic foundation of (quantum) thermodynamics. In preparation.
  20. G. Chiribella & C. M. Scandolo (2015): Conservation of information and the foundations of quantum mechanics. EPJ Web of Conferences 95, pp. 03003, doi:10.1051/epjconf/20149503003.
  21. G. Chiribella & C. M. Scandolo (2015): Entanglement and thermodynamics in general probabilistic theories. arXiv:1504.07045.
  22. B. Coecke (2010): Quantum picturalism. Contemporary Physics 51, pp. 59–83, doi:10.1080/00107510903257624.
  23. B. Coecke, T. Fritz & R. W. Spekkens (2014): A mathematical theory of resources. arXiv:1409.5531.
  24. B. Coecke & É. O. Paquette (2011): Categories for the Practising Physicist. In: B. Coecke: New Structures for Physics, Lecture Notes in Physics 813. Springer, Berlin, Heidelberg, pp. 173–286, doi:10.1007/978-3-642-12821-9_3.
  25. B. Coecke, D. Pavlovic & J. Vicary (2013): A new description of orthogonal bases. Mathematical Structures in Computer Science 23, pp. 555–567, doi:10.1017/S0960129512000047.
  26. G. M. D'Ariano (2010): Probabilistic theories: what is special about quantum mechanics?. In: A. Bokulich & G. Jaeger: Philosophy of Quantum Information and Entanglement. Cambridge University Press, Cambridge, pp. 85–126, doi:10.1017/CBO9780511676550.007.
  27. G. M. D'Ariano, F. Manessi, P. Perinotti & A. Tosini (2014): Fermionic computation is non-local tomographic and violates monogamy of entanglement. EPL (Europhysics Letters) 107(2), pp. 20009, doi:10.1209/0295-5075/107/20009.
  28. G. M. D'Ariano, F. Manessi, P. Perinotti & A. Tosini (2014): The Feynman problem and fermionic entanglement: Fermionic theory versus qubit theory. International Journal of Modern Physics A 29(17), pp. 1430025, doi:10.1142/S0217751X14300257.
  29. P. Faist, F. Dupuis, J. Oppenheim & R. Renner (2015): The minimal work cost of information processing. Nature Communications 6, doi:10.1038/ncomms8669.
  30. J. Gemmer, M. Michel & G. Mahler (2009): Quantum Thermodynamics: Emergence of Thermodynamic Behavior Within Composite Quantum Systems. Lecture Notes in Physics 784. Springer Verlag, Berlin, Heidelberg, doi:10.1007/978-3-540-70510-9.
  31. J. Gemmer, A. Otte & G. Mahler (2001): Quantum Approach to a Derivation of the Second Law of Thermodynamics. Phys. Rev. Lett. 86, pp. 1927–1930, doi:10.1103/PhysRevLett.86.1927.
  32. S. Goldstein, J. L. Lebowitz, R. Tumulka & N. Zanghì (2006): Canonical Typicality. Phys. Rev. Lett. 96, pp. 050403, doi:10.1103/PhysRevLett.96.050403.
  33. G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens & N. Yunger Halpern (2015): The resource theory of informational nonequilibrium in thermodynamics. Physics Reports 583, pp. 1–58, doi:10.1016/j.physrep.2015.04.003.
  34. G. H. Hardy, J. E. Littlewood & G. Pólya (1929): Some simple inequalities satisfied by convex functions. Messenger Math 58(145–152), pp. 310.
  35. L. Hardy (2001): Quantum theory from five reasonable axioms. arXiv quant-ph/0101012.
  36. L. Hardy (2011): Foliable operational structures for general probabilistic theories. In: H. Halvorson: Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge University Press, Cambridge, pp. 409–442, doi:10.1017/CBO9780511976971.013.
  37. L. Hardy (2011): Reformulating and reconstructing quantum theory. arXiv:1104.2066.
  38. L. Hardy (2016): Reconstructing quantum theory. In: G. Chiribella & R. W. Spekkens: Quantum Theory: Informational Foundations and Foils. Springer Netherlands, Dordrecht, pp. 223–248, doi:10.1007/978-94-017-7303-4.
  39. M. Horodecki & J. Oppenheim (2013): Fundamental limitations for quantum and nanoscale thermodynamics. Nature Communications 4, doi:10.1038/ncomms3059.
  40. G. Kimura, K. Nuida & H. Imai (2010): Distinguishability measures and entropies for general probabilistic theories. Reports on Mathematical Physics 66(2), pp. 175–206, doi:10.1016/S0034-4877(10)00025-X.
  41. M. Krumm (2015): Thermodynamics and the Structure of Quantum Theory as a Generalized Probabilistic Theory. arXiv:1508.03299. Master's thesis.
  42. S. Lloyd (1988): Black Holes, Demons, and the Loss of Coherence. Rockfeller University. Available at http://meche.mit.edu/documents/slloyd_thesis.pdf.
  43. E. Lubkin & T. Lubkin (1993): Average quantal behavior and thermodynamic isolation. International Journal of Theoretical Physics 32(6), pp. 933–943, doi:10.1007/BF01215300.
  44. A. W. Marshall, I. Olkin & B. C. Arnold (2011): Inequalities: Theory of Majorization and Its Applications. Springer Series in Statistics. Springer, New York, doi:10.1007/978-0-387-68276-1.
  45. M. P. Müller, O. C. O. Dahlsten & V. Vedral (2012): Unifying Typical Entanglement and Coin Tossing: on Randomization in Probabilistic Theories. Communications in Mathematical Physics 316(2), pp. 441–487, doi:10.1007/s00220-012-1605-x.
  46. M. P. Müller, D. Gross & J. Eisert (2011): Concentration of Measure for Quantum States with a Fixed Expectation Value. Communications in Mathematical Physics 303(3), pp. 785–824, doi:10.1007/s00220-011-1205-1.
  47. M. P. Müller & L. Masanes (2013): Three-dimensionality of space and the quantum bit: an information-theoretic approach. New Journal of Physics 15(5), pp. 053040, doi:10.1088/1367-2630/15/5/053040.
  48. M. P. Müller, J. Oppenheim & O. C. O. Dahlsten (2012): The black hole information problem beyond quantum theory. Journal of High Energy Physics 2012(9):116, doi:10.1007/JHEP09(2012)116.
  49. M. A. Nielsen & I. L. Chuang (2010): Quantum computation and quantum information. Cambridge University Press, Cambridge, doi:10.1017/CBO9780511976667.
  50. M. Ozawa (1984): Quantum measuring processes of continuous observables. Journal of Mathematical Physics 25(1), pp. 79–87, doi:10.1063/1.526000.
  51. V. Paulsen (2002): Completely bounded maps and operator algebras. Cambridge University Press, Cambridge, doi:10.1017/CBO9780511546631.
  52. C. Piron (1976): Foundations of quantum physics. Mathematical Physics Monograph Series. Benjamin-Cummings Publishing Company.
  53. S. Popescu, A. J. Short & A. Winter (2006): Entanglement and the foundations of statistical mechanics. Nature Physics 2(11), pp. 754–758, doi:10.1038/nphys444.
  54. C. M. Scandolo (2014): Entanglement and thermodynamics in general probabilistic theories. Università degli Studi di Padova, Italy. Available at http://tesi.cab.unipd.it/46015/1/Scandolo_carlo_maria.pdf.
  55. P. Selinger (2011): A Survey of Graphical Languages for Monoidal Categories. In: B. Coecke: New Structures for Physics, Lecture Notes in Physics 813. Springer, Berlin, Heidelberg, pp. 289–356, doi:10.1007/978-3-642-12821-9_4.
  56. A. J. Short & S. Wehner (2010): Entropy in general physical theories. New Journal of Physics 12(3), pp. 033023, doi:10.1088/1367-2630/12/3/033023.
  57. W. F. Stinespring (1955): Positive functions on C*-algebras. Proceedings of the American Mathematical Society 6(2), pp. 211–216, doi:10.1090/S0002-9939-1955-0069403-4.
  58. W. Thirring (2002): Quantum mathematical physics. Springer-Verlag, Berlin, Heidelberg, doi:10.1007/978-3-662-05008-8.
  59. A. Uhlmann (1971): Sätze über Dichtematrizen. Wiss. Z. Karl-Marx Univ. Leipzig 20, pp. 633–637.
  60. A. Uhlmann (1972): Endlich-dimensionale Dichtematrizen I. Wiss. Z. der Karl-Marx Univ. Leipzig. 21, pp. 421–452.
  61. A. Uhlmann (1973): Endlich-dimensionale Dichtematrizen II. Wiss. Z. Karl-Marx-Univ. Leipzig 22, pp. 139–177.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org