1. Costin Bădescu & Prakash Panangaden (2015): Quantum Alternation: Prospects and Problems. arXiv preprint arXiv:1511.01567.
  2. Giulio Chiribella, Giacomo Mauro D’Ariano & Paolo Perinotti (2011): Informational derivation of quantum theory. Physical Review A 84(1):012311, doi:10.1103/PhysRevA.84.012311.
  3. Kenta Cho (2016): Semantics for a Quantum Programming Language by Operator Algebras. New Generation Computing 34(1-2), pp. 25–68, doi:10.1007/s00354-016-0204-3.
  4. Kenta Cho, Bart Jacobs, Bas Westerbaan & Abraham Westerbaan (2015): An introduction to effectus theory. arXiv preprint arXiv:1512.05813.
  5. Man-Duen Choi (1974): A Schwarz Inequality for Positive Linear Maps on C^*-algebras. Illinois Journal of Mathematics 18(4), pp. 565–574.
  6. Richard V Kadison & John R Ringrose (1997): Fundamentals of the Theory of Operator Algebras. American Mathematical Society.
  7. GG Kasparov (1980): Hilbert C*-modules: theorems of Stinespring and Voiculescu. J. Operator theory 4(1), pp. 133–150.
  8. Dennis Kretschmann, Dirk Schlingemann & Reinhard F Werner (2008): The information-disturbance tradeoff and the continuity of Stinespring's representation. Information Theory, IEEE Transactions on 54(4), pp. 1708–1717, doi:10.1109/TIT.2008.917696.
  9. E. Christopher Lance (1995): Hilbert C^*-modules. London Mathematical Society Lecture Note Series 210. Cambridge University Press, Cambridge, doi:10.1017/CBO9780511526206. A toolkit for operator algebraists.
  10. Göran Lindblad (1975): Completely positive maps and entropy inequalities. Communications in Mathematical Physics 40(2), pp. 147–151, doi:10.1007/BF01609396.
  11. William L Paschke (1973): Inner product modules over B^*-algebras. Transactions of the American Mathematical Society 182, pp. 443–468, doi:10.1090/S0002-9947-1973-0355613-0.
  12. Vern Paulsen (2002): Completely bounded maps and operator algebras. Cambridge Studies in Advanced Mathematics 78. Cambridge University Press, Cambridge.
  13. Shôichirô Sakai (2012): C*-algebras and W*-algebras. Springer Science & Business Media.
  14. Peter Selinger (2007): Dagger compact closed categories and completely positive maps. Electronic Notes in Theoretical Computer Science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  15. Michael Skeide (2000): Generalised matrix C*-algebras and representations of Hilbert modules. In: MATHEMATICAL PROCEEDINGS-ROYAL IRISH ACADEMY 100, pp. 11–38.
  16. Sam Staton (2015): Algebraic effects, linearity, and quantum programming languages. In: ACM SIGPLAN Notices 50. ACM, pp. 395–406, doi:10.1145/2775051.2676999.
  17. W Forrest Stinespring (1955): Positive functions on C*-algebras. Proceedings of the American Mathematical Society 6(2), pp. 211–216, doi:10.2307/2032342.
  18. Erling Størmer (2012): Positive linear maps of operator algebras. Springer Science & Business Media.
  19. D. Topping (1971): Lectures on von Neumann algebras. Van Nostrand Reinhold.
  20. Reinhard F Werner (1998): Optimal cloning of pure states. Physical Review A 58(3), pp. 1827, doi:10.1103/PhysRevA.58.1827.
  21. Abraham Westerbaan & Bas Westerbaan ( When does Stinespring dilation yield a faithful representation?. Mathematics Stack Exchange. Available at
  22. Abraham Westerbaan & Bas Westerbaan (2016): A universal property for sequential measurement. Journal of Mathematical Physics 57(9), pp. 092203, doi:10.1063/1.4961526.

Comments and questions to:
For website issues: