References

  1. Samson Abramsky & Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics 13(11), pp. 113036, doi:10.1088/1367-2630/13/11/113036.
  2. Samson Abramsky & Adam Brandenburger (2014): An operational interpretation of negative probabilities and no-signalling models. In: Horizons of the Mind. A Tribute to Prakash Panangaden. Springer, pp. 59–75, doi:10.1103/PhysRev.40.749.
  3. DM Appleby, Åsa Ericsson & Christopher A Fuchs (2011): Properties of QBist state spaces. Foundations of Physics 41(3), pp. 564–579, doi:10.1007/s10701-010-9458-7.
  4. Marcus Appleby, Christopher A Fuchs, Blake C Stacey & Huangjun Zhu (2017): Introducing the Qplex: a novel arena for quantum theory. The European Physical Journal D 71(7), pp. 197, doi:10.1140/epjd/e2017-80024-y.
  5. Jonathan Barrett, Niel de Beaudrap, Matty J Hoban & Ciarán M Lee (2017): The computational landscape of general physical theories. arXiv preprint arXiv:1702.08483.
  6. Giulio Chiribella, Giacomo Mauro DAriano & Paolo Perinotti (2011): Informational derivation of quantum theory. Physical Review A 84(1), pp. 012311, doi:10.1103/PhysRevLett.103.170502.
  7. Christopher Ferrie (2011): Quasi-probability representations of quantum theory with applications to quantum information science. Reports on Progress in Physics 74(11), pp. 116001, doi:10.1088/0034-4885/74/11/116001.
  8. Christopher Ferrie & Joseph Emerson (2008): Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations. Journal of Physics A: Mathematical and Theoretical 41(35), pp. 352001, doi:10.1088/1751-8113/41/35/352001.
  9. Richard P Feynman (1982): Simulating physics with computers. International journal of theoretical physics 21(6), pp. 467–488, doi:10.1007/BF02650179.
  10. Christopher A Fuchs (2017): Notwithstanding Bohr, the Reasons for QBism. arXiv preprint arXiv:1705.03483.
  11. Christopher A Fuchs & Rüdiger Schack (2013): Quantum-bayesian coherence. Reviews of Modern Physics 85(4), pp. 1693, doi:10.1016/j.shpsb.2005.05.005.
  12. Gilad Gour & Amir Kalev (2014): Construction of all general symmetric informationally complete measurements. Journal of Physics A: Mathematical and Theoretical 47(33), pp. 335302, doi:10.1088/1751-8113/47/33/335302.
  13. Lucien Hardy (2001): Quantum theory from five reasonable axioms. arXiv preprint quant-ph/0101012.
  14. Lucien Hardy (2013): A formalism-local framework for general probabilistic theories, including quantum theory. Mathematical Structures in Computer Science 23(02), pp. 399–440, doi:10.1007/978-3-642-70029-3.
  15. Ciarán M Lee & Jonathan Barrett (2015): Computation in generalised probabilisitic theories. New Journal of Physics 17(8), pp. 083001, doi:10.1088/1367-2630/17/8/083001.
  16. A Mari & Jens Eisert (2012): Positive Wigner functions render classical simulation of quantum computation efficient. Physical review letters 109(23), pp. 230503, doi:10.1103/PhysRevA.79.062302.
  17. Hakop Pashayan, Joel J Wallman & Stephen D Bartlett (2015): Estimating outcome probabilities of quantum circuits using quasiprobabilities. Physical review letters 115(7), pp. 070501, doi:10.1088/1464-4266/6/10/003.
  18. Andrew James Scott & Markus Grassl (2010): Symmetric informationally complete positive-operator-valued measures: A new computer study. Journal of Mathematical Physics 51(4), pp. 042203, doi:10.1006/jsco.1996.0125.
  19. Peter Selinger (2007): Dagger compact closed categories and completely positive maps. Electronic Notes in Theoretical Computer Science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  20. Robert W Spekkens (2008): Negativity and contextuality are equivalent notions of nonclassicality. Physical review letters 101(2), pp. 020401, doi:10.1023/B:FOOP.0000019581.00318.a5.
  21. Robert W Spekkens (2016): Quasi-quantization: classical statistical theories with an epistemic restriction. In: Quantum Theory: Informational Foundations and Foils. Springer, pp. 83–135, doi:10.1007/978-94-017-7303-4_4.
  22. Victor Veitch, Christopher Ferrie, David Gross & Joseph Emerson (2012): Negative quasi-probability as a resource for quantum computation. New Journal of Physics 14(11), pp. 113011, doi:10.1088/1367-2630/14/11/113011.
  23. Victor Veitch, Nathan Wiebe, Christopher Ferrie & Joseph Emerson (2013): Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation. New Journal of Physics 15(1), pp. 013037, doi:10.1088/1367-2630/15/1/013037.
  24. Eugene Wigner (1932): On the quantum correction for thermodynamic equilibrium. Physical review 40(5), pp. 749, doi:10.1103/PhysRev.40.749.
  25. Huangjun Zhu (2016): Quasiprobability representations of quantum mechanics with minimal negativity. Physical Review Letters 117(12), pp. 120404, doi:10.1016/j.aop.2015.08.005.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org