References

  1. Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal & Shane Mansfield (2015): Contextuality, Cohomology and Paradox. 24th EACSL Annual Conference on Computer Science Logic (CSL), doi:10.4230/LIPIcs.CSL.2015.211.
  2. Samson Abramsky & Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics 13, doi:10.1088/1367-2630/13/11/113036.
  3. Samson Abramsky & Adam Brandenburger (2014): An Operational Interpretation of Negative Probabilities and No-Signalling Models. In: Horizons of the Mind. A Tribute to Prakash Panangaden., pp. 59–75, doi:10.1007/978-3-319-06880-0_3.
  4. Samson Abramsky & Bob Coecke (2009): Categorical Quantum Mechanics. Handbook of Quantum Logic and Quantum Structures, pp. 261–323, doi:10.1016/B978-0-444-52869-8.50010-4.
  5. Samson Abramsky & Lucien Hardy (2012): Logical Bell inequalities. Phys. Rev. A 85, pp. 062114, doi:10.1103/PhysRevA.85.062114.
  6. Sabri W. Al-Safi & Anthony J. Short (2013): Simulating all Nonsignaling Correlations via Classical or Quantum Theory with Negative Probabilities. Phys. Rev. Lett. 111, pp. 170403, doi:10.1103/PhysRevLett.111.170403.
  7. Miriam Backens (2014): The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of Physics 16(9), doi:10.1088/1367-2630/16/9/093021.
  8. Krzysztof Bar & Jamie Vicary (2014): Groupoid Semantics for Thermal Computing.
  9. Howard Barnum, Jonathan Barrett, Matthew Leifer & Alexander Wilce (2007): Generalized No-Broadcasting Theorem. Phys. Rev. Lett. 99, pp. 240501, doi:10.1103/PhysRevLett.99.240501.
  10. Howard Barnum & Alexander Wilce (2011): Information Processing in Convex Operational Theories. Electronic Notes in Theoretical Computer Science 270(1), pp. 3–15, doi:10.1016/j.entcs.2011.01.002.
  11. Jonathan Barrett (2007): Information processing in generalized probabilistic theories. Physical Review A - Atomic, Molecular, and Optical Physics 75(3), pp. 1–21, doi:10.1103/PhysRevA.75.032304.
  12. Oscar Cunningham & Chris Heunen (2017): Purity through factorisation.
  13. Niel de Beaudrap (2014): On computation with 'probabilities' modulo k.
  14. John S. Bell (1964): On the Einstein–-Podolsky–-Rosen paradox. Physics 1, pp. 195–200.
  15. Giulio Chiribella (2014): Distinguishability and copiability of programs in general process theories. Int. J. Software Informatics 8(3–4), pp. 209–223.
  16. Giulio Chiribella (2014): Dilation of states and processes in operational-probabilistic theories, doi:10.4204/EPTCS.172.1.
  17. Giulio Chiribella, Giacomo Mauro D'Ariano & Paolo Perinotti (2010): Probabilistic theories with purification. Physical Review A - Atomic, Molecular, and Optical Physics 81(6), doi:10.1103/PhysRevA.81.062348.
  18. Giulio Chiribella, Giacomo Mauro D'Ariano & Paolo Perinotti (2011): Informational derivation of quantum theory. Physical Review A - Atomic, Molecular, and Optical Physics 84(1), pp. 1–39, doi:10.1103/PhysRevA.84.012311.
  19. Giulio Chiribella, Giacomo Mauro D'Ariano & Paolo Perinotti (2012): Quantum Theory, namely the pure and reversible theory of information. Entropy 14(10), pp. 1877–1893, doi:10.3390/e14101877.
  20. Giulio Chiribella, Giacomo Mauro D'Ariano & Paolo Perinotti (2015): Quantum from principles, doi:10.1007/978-94-017-7303-4.
  21. Giulio Chiribella & Carlo Maria Scandolo (2015): Operational axioms for diagonalizing states 195, pp. 96–115, doi:10.4204/EPTCS.195.8.
  22. Giulio Chiribella & Carlo Maria Scandolo (2015): Entanglement and thermodynamics in general probabilistic theories. New Journal of Physics 17(10), pp. 103027, doi:10.1088/1367-2630/17/10/103027.
  23. Giulio Chiribella & Carlo Maria Scandolo (2016): Entanglement as an axiomatic foundation for statistical mechanics.
  24. Giulio Chiribella & Carlo Maria Scandolo (2016): Purity in microcanonical thermodynamics: a tale of three resource theories.
  25. Giulio Chiribella & Xiao Yuan (2016): Bridging the gap between general probabilistic theories and the device-independent framework for nonlocality and contextuality. Information and Computation, doi:10.1016/j.ic.2016.02.006.
  26. Bob Coecke (2009): Quantum Picturalism. Contemporary Physics, pp. 1–32, doi:10.1080/00107510903257624.
  27. Bob Coecke & Ross Duncan (2011): Interacting quantum observables: Categorical algebra and diagrammatics. New Journal of Physics 13, doi:10.1088/1367-2630/13/4/043016.
  28. Bob Coecke & Bill Edwards (2012): Spekkens's toy theory as a category of processes. Proceedings of Symposia in Applied Mathematics 71, pp. 28, doi:10.1090/psapm/071.
  29. Bob Coecke & Chris Heunen (2012): Pictures of complete positivity in arbitrary dimension. Electronic Proceedings in Theoretical Computer Science 95, pp. 27–35, doi:10.4204/EPTCS.95.4.
  30. Bob Coecke, Chris Heunen & Aleks Kissinger (2014): Categories of quantum and classical channels. Quantum Information Processing, pp. 1–31, doi:10.1007/s11128-014-0837-4.
  31. Bob Coecke & Aleks Kissinger (2015): Categorical Quantum Mechanics I: Causal Quantum Processes.
  32. Bob Coecke (2016): Terminality Implies No-signalling ... and Much More Than That. New Generation Computing 34, pp. 69–85, doi:10.1007/s00354-016-0201-6.
  33. Bob Coecke & Aleks Kissinger (2016): Picturing Quantum Processes. Cambridge University Press, doi:10.1017/9781316219317.
  34. Bob Coecke & Raymond Lal (2013): Causal Categories: Relativistically Interacting Processes. Foundations of Physics 43(4), pp. 458–501, doi:10.1007/s10701-012-9646-8.
  35. Bob Coecke & Dusko Pavlovic (2008): Quantum measurements without sums. Mathematics of Quantum Computation and Quantum Technology, doi:10.1201/9781584889007.ch16.
  36. Bob Coecke, Dusko Pavlovic & Jamie Vicary (2013): A new description of orthogonal bases. Mathematical Structures in Computer Science 23(03), doi:10.1017/S0960129512000047.
  37. Bob Coecke, John Selby & Sean Tull (2017): Two roads to classicality.
  38. Oscar Cunningham & Chris Heunen (2015): Axiomatizing complete positivity. Electronic Proceedings in Theoretical Computer Science Qpl 2015, pp. 148–157, doi:10.4204/EPTCS.195.11.
  39. Borivoje Daki\'c & Časlav Brukner (2011): Quantum theory and beyond: is entanglement special?. In: Hans Halvorson: Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge University Press, Cambridge, pp. 365–392, doi:10.1017/CBO9780511976971.011.
  40. Giacomo Mauro D'Ariano, Franco Manessi, Paolo Perinotti & Alessandro Tosini (2014): Fermionic computation is non-local tomographic and violates monogamy of entanglement. EPL (Europhysics Letters) 107(2), pp. 20009, doi:10.1209/0295-5075/107/20009.
  41. Giacomo Mauro D'Ariano, Franco Manessi, Paolo Perinotti & Alessandro Tosini (2014): The Feynman problem and fermionic entanglement: Fermionic theory versus qubit theory. International Journal of Modern Physics A 29(17), pp. 1430025, doi:10.1142/S0217751X14300257.
  42. Julien Degorre, Marc Kaplan, Sophie Laplante & Jérémie Roland (2009): The Communication Complexity of Non-signaling Distributions, pp. 270–281. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-642-03816-7_24.
  43. Tobias Fritz (2015): Beyond Bell's Theorem II: Scenarios with arbitrary causal structure. Communications in Mathematical Physics 341(2), doi:10.1007/s00220-015-2495-5.
  44. Stefano Gogioso (2015): A Bestiary of Sets and Relations. Electronic Proceedings in Theoretical Computer Science QPL 2015, pp. 208–227, doi:10.4204/EPTCS.195.16.
  45. Stefano Gogioso (2017): Fantastic quantum theories, and where to find them.
  46. Stefano Gogioso & William Zeng (2017): Generalised Mermin-type non-locality arguments.
  47. Amar Hadzihasanovic (2015): A diagrammatic axiomatisation for qubit entanglement. Proceedings - Symposium on Logic in Computer Science 2015, pp. 573–584, doi:10.1109/LICS.2015.59.
  48. Lucien Hardy (2001): Quantum Theory From Five Reasonable Axioms.
  49. Lucien Hardy (2011): Foliable operational structures for general probabilistic theories. In: H. Halvorson: Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge University Press, Cambridge, pp. 409–442, doi:10.1017/CBO9780511976971.013.
  50. Lucien Hardy (2011): Reformulating and reconstructing quantum theory.
  51. Lucien Hardy (2016): Quantum Theory: Informational Foundations and Foils, chapter Reconstructing Quantum Theory, pp. 223–248. Springer Netherlands, Dordrecht, doi:10.1007/978-94-017-7303-4_7.
  52. Joe Henson, Raymond Lal & Matthew F Pusey (2014): Theory-independent limits on correlations from generalized Bayesian networks. New J. Phys. 16(11), pp. 113043, doi:10.1088/1367-2630/16/11/113043.
  53. Clare Horsman (2011): Quantum picturalism for topological cluster-state. New Journal of Physics 133(9), doi:10.1088/1367-2630/13/9/095011.
  54. Aleks Kissinger (2012): Pictures of Processes: Automated Graph Rewriting for Monoidal Categories and Applications to Quantum Computing.
  55. Lluis Masanes & Markus P. Müller (2011): A derivation of quantum theory from physical requirements. New J. Phys. 13(6), pp. 063001, doi:10.1088/1367-2630/13/6/063001.
  56. John Selby & Bob Coecke (2017): Leaks: quantum, classical, intermediate and more, doi:10.1103/RevModPhys.79.555.
  57. John Selby, Carlo Maria Scandolo & Bob Coecke (2017): Reconstructing Quantum Theory from Diagrammatic Postulates.
  58. Peter Selinger (2007): Dagger Compact Closed Categories and Completely Positive Maps. Electronic Notes in Theoretical Computer Science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  59. Peter Selinger (2008): Idempotents in dagger categories ( extended abstract ). Electronic Notes in Theoretical Computer Science 210, pp. 107—-122, doi:10.1016/j.entcs.2008.04.021.
  60. Sean Tull (2016): Operational Theories of Physics as Categories.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org