References

  1. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Logic in Computer Science, pp. 415–425, doi:10.1109/lics.2004.1319636.
  2. R. Blute & M. Comeau (2015): Von Neumann categories. Applied Categorical Structures 23(5), pp. 725–740, doi:10.1007/s10485-014-9375-6.
  3. M. Boyarchenko & V. Drinfeld (2014): Character sheaves on unipotent groups in positive characteristic: foundations. Selecta Mathematica 20(1), pp. 125–235, doi:10.1007/s00029-013-0133-7. Available at http://arxiv.org/abs/0810.0794.
  4. P. Clare, T. Crisp & N. Higson (2016): Adjoint functors between categories of Hilbert C*-modules. Journal of the Instititue of Mathematics of Jussieu, pp. 1–33, doi:10.1017/S1474748016000074.
  5. B. Coecke, C. Heunen & A. Kissinger (2016): Categories of quantum and classical channels. Quantum Information Processing 15(12), pp. 5179–5209, doi:10.1007/s11128-014-0837-4.
  6. B. Coecke & A. Kissinger (2017): Picturing quantum processes: a first course in quantum theory and diagrammatic reasoning. Cambridge University Press, doi:10.1017/9781316219317.
  7. B. Coecke & R. Lal (2013): Causal categories: relativistically interacting processes. Foundations of Physics 43(4), pp. 458–501, doi:10.1007/s10701-012-9646-8.
  8. M. Fiore & T. Leinster (2010): An abstract characterization of Thompson's group F. Semigroup Forum 80, pp. 325–340, doi:10.1007/s00233-010-9209-2.
  9. S. Fujii, S. Katsumata & P.-A. Melliès (2015): Towards a formal theory of graded monads. In: Foundations of Software Science and Computation Structures. Springer, pp. 513–530, doi:10.1007/978-3-662-49630-5_30.
  10. P. Hayden & A. May (2016): Summoning information in spacetime, or where and when can a qubit be?. Journal of Physics A 49(17), pp. 175304, doi:10.1088/1751-8113/49/17/175304.
  11. C. Heunen & M. L. Reyes (2017): Frobenius structures over Hilbert C*-modules. Available at http://arxiv.org/abs/1704.05725.
  12. C. Heunen & J. Vicary (2017): Categories for Quantum Theory: an introduction. Oxford University Press.
  13. P. Hines (2016): Coherence and strictification for self-similarity. Journal of Homotopy and Related Structures 11, pp. 847–867, doi:10.1007/s40062-016-0154-y.
  14. B. Jacobs & J. Mandemaker (2012): Coreflections in algebraic quantum logic. Foundations of Physics 42(2), pp. 932–958, doi:10.1007/s10701-012-9654-8.
  15. M. Kashiwara & P. Schapira (2005): Categories and sheaves. Springer.
  16. A. Kent (2012): Quantum tasks in Minkowski space. Classical and Quantum Gravity 29, pp. 224013, doi:10.1088/0264-9381/29/22/224013.
  17. A. Kissinger & S. Uijlen (2017): A categorical semantics for causal structure. In: Logic in Computer Science, doi:10.1109/LICS.2017.8005095. Available at http://arxiv.org/abs/1701.04732.
  18. E. C. Lance (1995): Hilbert C*-modules: a toolkit for operator algebraists. Cambridge University Press, doi:10.1017/CBO9780511526206.
  19. K. Martin & P. Panangaden (2006): A domain of spacetime intervals in general relativity. Communications in mathematical physics 267(3), pp. 563–586, doi:10.1007/s00220-006-0066-5.
  20. R. Penrose (1972): Techniques in Differential Topology in Relativity. SIAM, doi:10.1137/1.9781611970609.
  21. D. Quillen (1996): Module theory over nonunital rings. Available at http://www.claymath.org/library/Quillen/Working_papers/quillen%201996/1996-2.pdf.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org