References

  1. Scott Aaronson, Daniel Grier & Luke Schaeffer (2017): The Classification of Reversible Bit Operations. In: Christos H. Papadimitriou: 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), Leibniz International Proceedings in Informatics (LIPIcs) 67. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 23:1–23:34, doi:10.4230/LIPIcs.ITCS.2017.23.
  2. Holger Bock Axelsen & Robin Kaarsgaard (2016): Join inverse categories as models of reversible recursion. In: International Conference on Foundations of Software Science and Computation Structures. Springer, pp. 73–90, doi:10.1007/978-3-662-49630-5_5.
  3. Michael Barr (1992): Algebraically compact functors. Journal of Pure and Applied Algebra 82(3), pp. 211–231, doi:10.1016/0022-4049(92)90169-G.
  4. J.R.B. Cockett & Stephen Lack (2002): Restriction categories I: categories of partial maps. Theoretical computer science 270(1-2), pp. 223–259, doi:10.1016/S0304-3975(00)00382-0.
  5. J.R.B. Cockett, Cole Comfort & Priyaa Srinivasan (2018): The Category CNOT. Electronic Proceedings in Theoretical Computer Science 266, pp. 258–293, doi:10.4204/eptcs.266.18.
  6. Edward Fredkin & Tommaso Toffoli (2002): Conservative logic. In: Collision-based computing. Springer, pp. 47–81, doi:10.1007/BF01857727.
  7. Brett Giles (2014): An investigation of some theoretical aspects of reversible computing. University of Calgary, doi:10.5072/PRISM/24917.
  8. Robert Glück & Robin Kaarsgaard (2017): A categorical foundation for structured reversible flowchart languages. In: Proceedings of the 33rd Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIII), doi:10.1016/j.entcs.2018.03.021.
  9. Daniel Gottesman (1997): Stabilizer codes and quantum error correction. arXiv preprint quant-ph/9705052, doi:10.7907/rzr7-dt72.
  10. Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger & Benoît Valiron (2013): An introduction to quantum programming in Quipper. In: International Conference on Reversible Computation. Springer, pp. 110–124, doi:10.1007/978-3-642-38986-3_10.
  11. Kazuo Iwama, Yahiko Kambayashi & Shigeru Yamashita (2002): Transformation rules for designing CNOT-based quantum circuits. In: Proceedings of the 39th annual Design Automation Conference. ACM, pp. 419–424, doi:10.1145/513918.514026.
  12. Yves Lafont (2003): Towards an algebraic theory of boolean circuits. Journal of Pure and Applied Algebra 184(2-3), pp. 257–310, doi:10.1016/S0022-4049(03)00069-0.
  13. T Monz, K Kim, W Hänsel, M Riebe, AS Villar, P Schindler, M Chwalla, M Hennrich & R Blatt (2009): Realization of the quantum Toffoli gate with trapped ions. Physical review letters 102(4), pp. 040501, doi:10.1103/PhysRevLett.102.040501.
  14. Matthew D Reed, Leonardo DiCarlo, Simon E Nigg, Luyan Sun, Luigi Frunzio, Steven M Girvin & Robert J Schoelkopf (2012): Realization of three-qubit quantum error correction with superconducting circuits. Nature 482(7385), pp. 382, doi:10.1038/nature10786.
  15. Peter W Shor (1996): Fault-tolerant quantum computation. In: Proceedings of 37th Conference on Foundations of Computer Science. IEEE, pp. 56–65, doi:10.1109/SFCS.1996.548464.
  16. Renaud Vilmart (2018): A ZX-Calculus with Triangles for Toffoli-Hadamard, Clifford+ T, and Beyond. arXiv preprint arXiv:1804.03084.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org