References

  1. Matthew Amy (2019): Formal Methods in Quantum Circuit Design. University of Waterloo.
  2. Matthew Amy (2019): Towards Large-scale Functional Verification of Universal Quantum Circuits. In: Peter Selinger & Giulio Chiribella: Proceedings of the 15th International Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018, Electronic Proceedings in Theoretical Computer Science 287. Open Publishing Association, pp. 1–21, doi:10.4204/EPTCS.287.1.
  3. Miriam Backens (2014): The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of Physics 16(9), pp. 093021, doi:10.1088/1367-2630/16/9/093021.
  4. Miriam Backens & Aleks Kissinger (2019): ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity. In: Peter Selinger & Giulio Chiribella: Proceedings of the 15th International Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018, Electronic Proceedings in Theoretical Computer Science 287. Open Publishing Association, pp. 23–42, doi:10.4204/EPTCS.287.2.
  5. Miriam Backens, Aleks Kissinger, Hector Miller-Bakewell, John van de Wetering & Sal Wolffs (2021): Completeness of the ZH-calculus. arXiv preprint arXiv:2103.06610. Available at http://arxiv.org/abs/2103.06610.
  6. Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski & John van de Wetering (2021): There and back again: A circuit extraction tale. Quantum 5, pp. 421, doi:10.22331/q-2021-03-25-421.
  7. Adam D Bookatz (2012): QMA-complete problems. arXiv preprint arXiv:1212.6312. Available at https://arxiv.org/abs/1212.6312.
  8. Bob Coecke & Ross Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13, pp. 043016, doi:10.1088/1367-2630/13/4/043016.
  9. Bob Coecke & Aleks Kissinger (2018): Picturing Quantum Processes - A First Course on Quantum Theory and Diagrammatic Reasoning, doi:10.1007/978-3-319-91376-6_6.
  10. Ross Duncan, Aleks Kissinger, Simon Pedrix & John van de Wetering (2020): Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus. Quantum 4, pp. 279, doi:10.22331/q-2020-06-04-279.
  11. Ross Duncan & Simon Perdrix (2009): Graph states and the necessity of Euler decomposition. In: Conference on Computability in Europe. Springer, pp. 167–177, doi:10.1007/978-3-642-03073-4_18.
  12. Ross Duncan & Simon Perdrix (2010): Rewriting measurement-based quantum computations with generalised flow. In: International Colloquium on Automata, Languages, and Programming. Springer, pp. 285–296, doi:10.1007/978-3-642-14162-1_24.
  13. Ross Duncan & Simon Perdrix (2014): Pivoting makes the ZX-calculus complete for real stabilizers. In: Proceedings of the 10th International Workshop on Quantum Physics and Logic (QPL), Electronic Proceedings in Theoretical Computer Science 171. Open Publishing Association, pp. 50–62, doi:10.4204/EPTCS.171.5.
  14. Mariami Gachechiladze (2019): Quantum hypergraph states and the theory of multiparticle entanglement. Universität Siegen. http://141.99.19.133//bitstream/ubsi/1509/2/Dissertation_Mariami_Gachechiladze.pdf.
  15. Mariami Gachechiladze, Otfried Gühne & Akimasa Miyake (2019): Changing the circuit-depth complexity of measurement-based quantum computation with hypergraph states. Physical Review A 99(5), pp. 052304, doi:10.1103/PhysRevA.99.052304.
  16. Mariami Gachechiladze, Nikoloz Tsimakuridze & Otfried Gühne (2017): Graphical description of unitary transformations on hypergraph states. Journal of Physics A: Mathematical and Theoretical 50(19), pp. 19LT01, doi:10.1088/1751-8121/aa676a.
  17. Aleks Kissinger, Alex Merry & Matvey Soloviev (2014): Pattern graph rewrite systems. In: Benedikt Löwe & Glynn Winskel: Proceedings 8th International Workshop on Developments in Computational Models, Cambridge, United Kingdom, 17 June 2012, Electronic Proceedings in Theoretical Computer Science 143. Open Publishing Association, pp. 54–66, doi:10.4204/EPTCS.143.5.
  18. Aleks Kissinger & John van de Wetering (2020): PyZX: Large Scale Automated Diagrammatic Reasoning. In: Bob Coecke & Matthew Leifer: Proceedings 16th International Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June 2019, Electronic Proceedings in Theoretical Computer Science 318. Open Publishing Association, pp. 229–241, doi:10.4204/EPTCS.318.14.
  19. Stach Kuijpers, John van de Wetering & Aleks Kissinger (2019): Graphical Fourier Theory and the Cost of Quantum Addition. arXiv preprint arXiv:1904.07551. Available at https://arxiv.org/abs/1904.07551.
  20. Louis Lemonnier (2019): Relating high-level frameworks for quantum circuits. Radboud University Nijmegen. Available at https://www.cs.ox.ac.uk/people/aleks.kissinger/papers/lemonnier-high-level.pdf.
  21. M. Van den Nest, J. Dehaene & B. De Moor (2004): Graphical description of the action of local Clifford transformations on graph states. Physical Review A 69(2), pp. 9422, doi:10.1103/physreva.69.022316.
  22. Ri Qu, Juan Wang, Zong-shang Li & Yan-ru Bao (2013): Encoding hypergraphs into quantum states. Physical Review A 87(2), pp. 022311, doi:10.1103/PhysRevA.87.022311.
  23. R. Raussendorf, D.E. Browne & H.J. Briegel (2003): Measurement-based quantum computation on cluster states. Physical Review A 68(2), pp. 22312, doi:10.1103/physreva.68.022312.
  24. Matteo Rossi, Marcus Huber, Dagmar Bruß & Chiara Macchiavello (2013): Quantum hypergraph states. New Journal of Physics 15(11), pp. 113022, doi:10.1088/1367-2630/15/11/113022.
  25. Yuki Takeuchi, Tomoyuki Morimae & Masahito Hayashi (2019): Quantum computational universality of hypergraph states with Pauli-X and Z basis measurements. Scientific reports 9(1), pp. 1–14, doi:10.1038/s41598-019-49968-3.
  26. Nikoloz Tsimakuridze & Otfried Gühne (2017): Graph states and local unitary transformations beyond local Clifford operations. Journal of Physics A: Mathematical and Theoretical 50(19), pp. 195302, doi:10.1088/1751-8121/aa67cd.
  27. Renaud Vilmart (2021): The Structure of Sum-Over-Paths, its Consequences, and Completeness for Clifford. In: Stefan Kiefer & Christine Tasson: Foundations of Software Science and Computation Structures. Springer International Publishing, Cham, pp. 531–550, doi:10.1007/978-3-030-71995-1_27.
  28. Vladimir Zamdzhiev (2016): Rewriting Context-free Families of String Diagrams. University of Oxford.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org