References

  1. Samson Abramsky & Bob Coecke (2004): A Categorical Semantics of Quantum Protocols. In: 19th IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings. IEEE Computer Society, pp. 415–425, doi:10.1109/LICS.2004.1319636.
  2. Matthew Amy (2018): Towards Large-scale Functional Verification of Universal Quantum Circuits. In: Proceedings of QPL 2018, pp. 1–21, doi:10.4204/EPTCS.287.1. [arXiv:1901.09476]; see also https://github.com/meamy/feynman..
  3. Miriam Backens (2014): The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of Physics 16(9), pp. 093021, doi:10.1088/1367-2630/16/9/093021.
  4. Miriam Backens (2014): The ZX-calculus is complete for the single-qubit Clifford+T group. In: Bob Coecke, Ichiro Hasuo & Prakash Panangaden: Proceedings of the 11th workshop on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 172. Open Publishing Association, pp. 293–303, doi:10.4204/EPTCS.172.21.
  5. Miriam Backens & Aleks Kissinger (2019): ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity. In: Peter Selinger & Giulio Chiribella: Proceedings of the 15th International Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018, Electronic Proceedings in Theoretical Computer Science 287. Open Publishing Association, pp. 23–42, doi:10.4204/EPTCS.287.2.
  6. Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020): Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities. In: Steven T. Flammia: 15th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2020, June 9-12, 2020, Riga, Latvia, LIPIcs 158. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 11:1–11:23, doi:10.4230/LIPIcs.TQC.2020.11.
  7. Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020): Techniques to Reduce π/4-Parity-Phase Circuits, Motivated by the ZX Calculus. In: Bob Coecke & Matthew Leifer: Proceedings 16th International Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June 2019, Electronic Proceedings in Theoretical Computer Science 318. Open Publishing Association, pp. 131–149, doi:10.4204/EPTCS.318.9.
  8. Xiaoning Bian: https://github.com/onestruggler/cx-ccx. GitHub.
  9. Donny Cheung, Dmitri Maslov, Jimson Mathew & Dhiraj K. Pradhan (2008): On the Design and Optimization of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography. In: Yasuhito Kawano & Michele Mosca: Theory of Quantum Computation, Communication, and Cryptography, Third Workshop, TQC 2008, Tokyo, Japan, January 30 - February 1, 2008. Revised Selected Papers, Lecture Notes in Computer Science 5106. Springer, pp. 96–104, doi:10.1007/978-3-540-89304-2_9.
  10. J.R.B. Cockett & Cole Comfort (2019): The Category TOF. In: Peter Selinger & Giulio Chiribella: Proceedings of the 15th International Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018, Electronic Proceedings in Theoretical Computer Science 287. Open Publishing Association, pp. 67–84, doi:10.4204/EPTCS.287.4.
  11. B. Coecke & Q. Wang (2018): ZX-Rules for 2-Qubit Clifford+T Quantum Circuits. In: Reversible Computation - 10th International Conference, RC 2018, Leicester, UK, September 12-14, 2018, Proceedings, pp. 144–161, doi:10.1007/978-3-319-99498-7_10.
  12. Bob Coecke & Ross Duncan (2008): Interacting Quantum Observables. In: Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir & Igor Walukiewicz: Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, Lecture Notes in Computer Science 5126. Springer, pp. 298–310, doi:10.1007/978-3-540-70583-3_25.
  13. Bob Coecke & Ross Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13(4), pp. 043016, doi:10.1088/1367-2630/13/4/043016. Available at http://stacks.iop.org/1367-2630/13/i=4/a=043016.
  14. Bob Coecke & Aleks Kissinger (2010): The Compositional Structure of Multipartite Quantum Entanglement. In: Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide & Paul G. Spirakis: Automata, Languages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II, Lecture Notes in Computer Science 6199. Springer, pp. 297–308, doi:10.1007/978-3-642-14162-1_25.
  15. Bob Coecke & Aleks Kissinger (2017): Picturing quantum processes. Cambridge University Press, doi:10.1017/9781316219317.
  16. Amar Hadzihasanovic (2015): A Diagrammatic Axiomatisation for Qubit Entanglement. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015. IEEE Computer Society, pp. 573–584, doi:10.1109/LICS.2015.59.
  17. Amar Hadzihasanovic (2017): The algebra of entanglement and the geometry of composition. University of Oxford.
  18. Kazuo Iwama, Yahiko Kambayashi & Shigeru Yamashita (2002): Transformation rules for designing CNOT-based quantum circuits. In: Proceedings of the 39th Design Automation Conference, DAC 2002, New Orleans, LA, USA, June 10-14, 2002. ACM, pp. 419–424, doi:10.1145/513918.514026.
  19. Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '18. ACM, New York, NY, USA, pp. 559–568, doi:10.1145/3209108.3209131.
  20. Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): Diagrammatic Reasoning Beyond Clifford+T Quantum Mechanics. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '18. ACM, New York, NY, USA, pp. 569–578, doi:10.1145/3209108.3209139.
  21. Aleks Kissinger & Arianne Meijer-van de Griend (2020): CNOT circuit extraction for topologically-constrained quantum memories. Quantum Inf. Comput. 20(7&8), pp. 581–596, doi:10.26421/QIC20.7-8-4.
  22. Aleks Kissinger & John van de Wetering (2020): PyZX: Large Scale Automated Diagrammatic Reasoning. In: Bob Coecke & Matthew Leifer: Proceedings 16th International Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June 2019, Electronic Proceedings in Theoretical Computer Science 318. Open Publishing Association, pp. 229–241, doi:10.4204/EPTCS.318.14.
  23. Aleks Kissinger & John van de Wetering (2020): Reducing the number of non-Clifford gates in quantum circuits. Phys. Rev. A 102, pp. 022406, doi:10.1103/PhysRevA.102.022406.
  24. Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs & Dmitri Maslov (2018): Automated optimization of large quantum circuits with continuous parameters. npj Quantum Information 4(1), pp. 23, doi:10.1038/s41534-018-0072-4. [arXiv:1710.07345].
  25. Kang Feng Ng & Quanlong Wang (2017): A universal completion of the ZX-calculus. arXiv:1706.09877.
  26. Kang Feng Ng & Quanlong Wang (2018): Completeness of the ZX-calculus for Pure Qubit Clifford+T Quantum Mechanics. arXiv:1801.07993.
  27. Tommaso Toffoli (1980): Reversible Computing. In: J. W. de Bakker & Jan van Leeuwen: Automata, Languages and Programming, 7th Colloquium, Noordweijkerhout, The Netherlands, July 14-18, 1980, Proceedings, Lecture Notes in Computer Science 85. Springer, pp. 632–644, doi:10.1007/3-540-10003-2_104.
  28. Renaud Vilmart (2019): A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum Mechanics. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pp. 1–10, doi:10.1109/LICS.2019.8785765.
  29. Quanlong Wang (2018): Completeness of the ZX-calculus. University of Oxford.
  30. Quanlong Wang (2020): An algebraic axiomatisation of ZX-calculus. To appear in Proceedings 17th International Conference on Quantum Physics and Logic. arXiv:1911.06752.
  31. Fang Zhang & Jianxin Chen (2019): Optimizing T gates in Clifford+T circuit as π/4 rotations around Paulis. arXiv:1903.12456.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org