References

  1. Alastair A. Abbott, Julian Wechs, Dominic Horsman, Mehdi Mhalla & Cyril Branciard (2018): Communication through coherent control of quantum channels. Available at https://arxiv.org/abs/1810.09826.
  2. Mateus Araújo, Adrien Feix, Fabio Costa & Časlav Brukner (2014): Quantum circuits cannot control unknown operations. New Journal of Physics 16(9), pp. 093026, doi:10.1088/1367-2630/16/9/093026.
  3. Giulio Chiribella, Giacomo Mauro D'Ariano & Paolo Perinotti (2010): Probabilistic theories with purification. Physical Review A 81, pp. 062348, doi:10.1103/PhysRevA.81.062348.
  4. Giulio Chiribella, Giacomo Mauro DAriano, Paolo Perinotti & Benoit Valiron (2013): Quantum computations without definite causal structure. Physical Review A 88(2), doi:10.1103/physreva.88.022318.
  5. Giulio Chiribella & Hlér Kristjánsson (2019): Quantum Shannon theory with superpositions of trajectories. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475(2225), pp. 20180903, doi:10.1098/rspa.2018.0903.
  6. Marios Christodoulou & Carlo Rovelli (2019): On the possibility of laboratory evidence for quantum superposition of geometries. Physics Letters B 792, pp. 64 – 68, doi:10.1016/j.physletb.2019.03.015.
  7. Bob Coecke & Ross Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13, pp. 043016, doi:10.1088/1367-2630/13/4/043016.
  8. Bob Coecke, Chris Heunen & Aleks Kissinger (2016): Categories of quantum and classical channels. Quantum Information Processing 15(12), pp. 5179–5209, doi:10.1007/s11128-014-0837-4.
  9. Bob Coecke & Raymond Lal (2012): Causal Categories: Relativistically Interacting Processes. Foundations of Physics 43(4), pp. 458501, doi:10.1007/s10701-012-9646-8.
  10. Giacomo Mauro D'Ariano, Giulio Chiribella & Paolo Perinotti (2017): Quantum Theory from First Principles: An Informational Approach. Cambridge University Press, doi:10.1017/9781107338340.
  11. Andreas Döring & Chris J. Isham (2010): What is a Thing?: Topos Theory in the Foundations of Physics. Lecture Notes in Physics, pp. 753937, doi:10.1007/978-3-642-12821-913.
  12. Giacomo Mauro DAriano (2018): Causality re-established. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376(2123), pp. 20170313, doi:10.1098/rsta.2017.0313.
  13. Stefano Gogioso (2017): Fantastic Quantum Theories and Where to Find Them. Available at https://arxiv.org/abs/1703.10576.
  14. Stefano Gogioso & Carlo Maria Scandolo (2018): Categorical Probabilistic Theories. Electronic Proceedings in Theoretical Computer Science 266, pp. 367385, doi:10.4204/eptcs.266.23.
  15. Chris J. Isham (2011): Topos Methods in the Foundations of Physics, pp. 187206. Cambridge University Press, doi:10.1017/CBO9780511976971.005.
  16. David B. Malament (1977): The class of continuous timelike curves determines the topology of spacetime. Journal of Mathematical Physics 18(7), pp. 1399–1404, doi:10.1063/1.523436.
  17. Chiara Marletto & Vladko Vedral (2017): Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity. Physical Review Letters 119(24):240402, doi:10.1103/PhysRevLett.119.240402.
  18. Chiara Marletto & Vlatko Vedral (2019): Answers to a few questions regarding the BMV experiment. Available at https://arxiv.org/abs/1907.08994.
  19. Daniel K. L. Oi (2003): Interference of Quantum Channels. Physical Review Letters 91(6), doi:10.1103/physrevlett.91.067902.
  20. Ognyan Oreshkov (2019): Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics. Quantum 3, pp. 206, doi:10.22331/q-2019-12-02-206.
  21. Ognyan Oreshkov, Fabio Costa & Časlav Brukner (2012): Quantum correlations with no causal order. Nature Communications 3(1), pp. 1092, doi:10.1038/ncomms2076.
  22. Nikola Paunkovic & Marko Vojinovic (2019): Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders. Available at https://arxiv.org/abs/1905.09682.
  23. Nicola Pinzani, Stefano Gogioso & Bob Coecke (2019): Categorical Semantics for Time Travel. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society, Los Alamitos, CA, USA, pp. 1–20, doi:10.1109/LICS.2019.8785664.
  24. Sina Salek, Daniel Ebler & Giulio Chiribella (2018): Quantum communication in a superposition of causal orders. Available at https://arxiv.org/abs/1809.06655.
  25. Jayne Thompson, Kavan Modi, Vlatko Vedral & Mile Gu (2018): Quantum plug nplay: modular computation in the quantum regime. New Journal of Physics 20(1), pp. 013004, doi:10.1088/1367-2630/aa99b3.
  26. Magdalena Zych, Fabio Costa, Igor Pikovski & Časlav Brukner (2019): Bell's theorem for temporal order. Nature Communications 10(1), pp. 3772, doi:10.1038/s41467-019-11579-x.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org