References

  1. D. Ashoush & B. Coecke (2016): Dual Density Operators and Natural Language Meaning. EPTCS 221, pp. 1–10, doi:10.4204/EPTCS.221.1.
  2. G. Chiribella, G. M. D'Ariano & P. Perinotti (2010): Probabilistic theories with purification. Phys. Rev. A 81, pp. 062348, doi:10.1103/PhysRevA.81.062348.
  3. B. Coecke & R. Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13(043016), doi:10.1088/1367-2630/13/4/043016.
  4. B. Coecke & K. Meichanetzidis (2020): Meaning Updating of Density Matrices. arXiv preprint arXiv:2001.00862v1.
  5. B. Coecke, D. Pavlovic & J. Vicary (2013): A new description of orthogonal bases. Mathematical Structures in Computer Science 23(3), pp. 555–567, doi:10.1017/S0960129512000047.
  6. B. Coecke & S. Perdrix (2012): Environment and classical channels in categorical quantum mechanics. Logical Methods in Computer Science 8, doi:10.2168/LMCS-8(4:14)2012.
  7. B. Coecke, J. Selby & S. Tull (2018): Two Roads to Classicality. EPTCS 266, pp. 104–118, doi:10.4204/EPTCS.266.7.
  8. Bob Coecke (2016): Terminality implies no-signalling... and much more than that. New Generation Computing 34(1-2), pp. 69–85, doi:10.1007/s00354-016-0201-6.
  9. Bob Coecke & Raymond Lal (2013): Causal categories: relativistically interacting processes. Foundations of Physics 43(4), pp. 458–501, doi:10.1007/s10701-012-9646-8.
  10. B. Daki\'c, T. Paterek & ^C. Brukner (2014): Density cubes and higher-order interference theories. New Journal of Physics 16(023028), doi:10.1088/1367-2630/16/2/023028.
  11. S. Gogioso (2019): Higher-order CPM Constructions. EPTCS 287, pp. 145–162, doi:10.4204/EPTCS.287.8.
  12. S. Gogioso & C. Scandolo (2018): Categorical Probabilistic Theories. EPTCS 266, pp. 367–385, doi:10.4204/EPTCS.266.23.
  13. S. Gogioso & C. Scandolo (2019): Density Hypercubes, Higher Order Interference and Hyper-decoherence: A Categorical Approach. In: Quantum Interaction. Springer International Publishing, pp. 141–160, doi:10.1007/978-3-030-35895-210.
  14. A. Kissinger & J. van de Wetering (2019): Reducing T-count with the ZX-calculus. arXiv preprint arXiv:1903.10477.
  15. C. M. Lee & J. H. Selby (2017): Higher-Order Interference in Extensions of Quantum Theory. Found Phys 47, pp. 89–112, doi:10.1007/s10701-016-0045-4.
  16. C. M. Lee & J. H. Selby (2018): A no-go theorem for theories that decohere to quantum mechanics. Proc. R. Soc. A 474(20170732), doi:10.1098/rspa.2017.0732.
  17. R. Piedeleu, D. Kartsaklis, B. Coecke & M. Sadrzadeh (2015): Open System Categorical Quantum Semantics in Natural Language Processing. arXiv preprint arXiv:1502.00831.
  18. P. Selinger (2007): Dagger Compact Closed Categories and Completely Positive Maps. Electronic Notes in Theoretical Computer Science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  19. P. Selinger (2008): Idempotents in Dagger Categories: (Extended Abstract). Electronic Notes in Theoretical Computer Science 210, pp. 107–122, doi:10.1016/j.entcs.2008.04.021.
  20. R. D. Sorkin (1994): Quantum Mechanics as Quantum Measure Theory. Mod. Phys. Lett. A 9(33), pp. 3119–3127, doi:10.1142/S021773239400294X.
  21. R. D. Sorkin (1997): Quantum Classical Correspondence: The 4th Drexel Symposium on Quantum Nonintegrability, chapter Quantum Measure Theory and its Interpretation, pp. 229–251. International Press, Boston.
  22. M. Zwart & B. Coecke (2018): Double Dilation = Double Mixing. EPTCS 266, pp. 133–146, doi:10.4204/EPTCS.266.9.
  23. K. Życzkowski (2008): Quartic quantum theory: an extension of the standard quantum mechanics. J. Phys. A: Math. Theor. 41(355302), doi:10.1088/1751-8113/41/35/355302.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org