References

  1. E. Alfsen (1971): Compact Convex Sets and Boundary Integrals. Springer-Verlag, doi:10.1007/978-3-642-65009-3.
  2. George D. Birkhoff & John von Neumann (1936): The logic of quantum mechanics. Annals of Math. 37, pp. 823–834, doi:10.2307/1968621.
  3. P. Busch (2003): Quantum states and generalized observables: a simple proof of Gleason's theorem. Phys. Rev. Lett. 91(12), doi:10.1103/PhysRevLett.91.120403.
  4. E. D'Hondt & P. Panangaden (2006): Quantum weakest preconditions. Math. Struct. in Comp. Sci. 16(3), pp. 429–451, doi:10.1017/S0960129506005251.
  5. J. Diestel & J. Uhl (1977): Vector Measures. American Mathematical Society, doi:10.1090/surv/015.
  6. A. Dvurečenskij & S. Pulmannová (2000): New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, doi:10.1007/978-94-017-2422-7.
  7. D. J. Foulis & M.K. Bennett (1994): Effect Algebras and Unsharp Quantum Logics. Found. Phys. 24(10), pp. 1331–1352, doi:10.1007/BF02283036.
  8. M. Giry (1982): A categorical approach to probability theory. In: B. Banaschewski: Categorical Aspects of Topology and Analysis, Lecture Notes in Mathematics 915. Springer Berlin Heidelberg, pp. 68–85, doi:10.1007/BFb0092872.
  9. S. Gudder (1998): Morphisms, tensor products and σ-effect algebras. Rep. Math. Phys. 42(3), pp. 321–346, doi:10.1016/S0034-4877(99)80003-2.
  10. S. Gudder (2010): Sequential product of quantum effects: an overview. Int. J. Math. Phys. 49, pp. 3118–3130, doi:10.1007/s10773-010-0390-6.
  11. S. Gudder & R. Greechie (2002): Sequential products on effect algebras. Rep. Math. Phys. 49, pp. 87–111, doi:10.1016/S0034-4877(02)80007-6.
  12. S. Gudder & G. Nagy (2001): Sequential quantum measurements. J. Math. Phys. 42(11), pp. 5212–5222, doi:10.1063/1.1407837.
  13. S. Gudder & S. Pulmannová (1998): Representation theorem for convex effect algebras. Commentationes Mathematicae Universitatis Carolinae 39(4), pp. 645–659.
  14. T. Heinosaari & M. Ziman (2012): The Mathematical Language of Quantum Theory. From Uncertainty to Entanglement. Cambridge Univ. Press.
  15. B. Jacobs (2012): New directions in categorical logic, for classical, probabilistic, and quantum logic. http://arxiv.org/abs/1205.3940.
  16. B. Jacobs (2013): Measurable Spaces and their Effect Logic. Logic in Computer Science (LICS 2013).
  17. B. Jacobs & J. Mandemaker (2012): The Expectation Monad in Quantum Foundations. In: B. Jacobs, P. Selinger & B. Spitters: Quantum Physics and Logic (QPL) 2011, Elect. Proc. in Theor. Comp. Sci. 95, pp. 143–182.
  18. B. Jacobs & J. Mandemaker (2012): Relating Operator Spaces via Adjunctions. In: J. Chubb Reimann, V. Harizanov & A. Eskandarian: Logic and Algebraic Structures in Quantum Computing and Information, Lect. Notes in Logic. Cambridge Univ. Press. See arxiv.org/abs/1201.1272.
  19. R. Kadison & J. Ringrose (1983): Fundamentals of the Theory of Operator Algebras. Academic Press.
  20. N. Landsman (1998): Mathematical Topics Between Classical and Quantum Mechanics. Springer, doi:10.1007/978-1-4612-1680-3.
  21. R. Nagel (1974): Order unit and base norm spaces. In: A. Hartkämper & H. Neumann: Foundations of Quantum Mechanics and Ordered Linear Spaces, Lecture Notes in Physics 29. Springer Berlin Heidelberg, pp. 23–29, doi:10.1007/3-540-06725-6-4.
  22. F. Schroeck (1996): Quantum Mechanics on Phase Space. Kluwer Acad. Publ., doi:10.1007/978-94-017-2830-0.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org