References

  1. H. Abraham, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, G. Alexandrowics, E. Arbel, A. Asfaw, C. Azaustre, AzizNgoueya, P. Barkoutsos, G. Barron, L. Bello, Y. Ben-Haim, D. Bevenius, L. S. Bishop, S. Bosch, D. Bucher, CZ, F. Cabrera, P. Calpin, L. Capelluto, J. Carballo, G. Carrascal, A. Chen, C.-F. Chen, R. Chen, J. M. Chow, C. Claus, C. Clauss, A. J. Cross, A. W. Cross, J. Cruz-Benito, C. Culver, A. D. Córcoles-Gonzales, S. Dague, M. Dartiailh, DavideFrr, A. R. Davila, D. Ding, E. Drechsler, Drew, E. Dumitrescu, K. Dumon, I. Duran, P. Eendebak, D. Egger, M. Everitt, P. M. Fernández, A. Frisch, A. Fuhrer, M. GEORGE, I. GOULD, J. Gacon, Gadi, B. G. Gago, J. M. Gambetta, L. Garcia, S. Garion, Gawel-Kus, J. Gomez-Mosquera, S. de la Puente González, D. Greenberg, W. Guan, J. A. Gunnels, I. Haide, I. Hamamura, V. Havlicek, J. Hellmers, Ł. Herok, S. Hillmich, H. Horii, C. Howington, S. Hu, W. Hu, H. Imai, T. Imamichi, R. Iten, T. Itoko, A. Javadi-Abhari, Jessica, K. Johns, N. Kanazawa, A. Karazeev, P. Kassebaum, Knabberjoe, A. Kovyrshin, V. Krishnan, K. Krsulich, G. Kus, R. LaRose, R. Lambert, J. Latone, S. Lawrence, D. Liu, P. Liu, P. B. Z. Mac, Y. Maeng, A. Malyshev, J. Marecek, M. Marques, D. Mathews, A. Matsuo, D. T. McClure, C. McGarry, D. McKay, S. Meesala, A. Mezzacapo, R. Midha, Z. Minev, M. D. Mooring, R. Morales, N. Moran, P. Murali, J. Müggenburg, D. Nadlinger, G. Nannicini, P. Nation, Y. Naveh, Nick-Singstock, P. Niroula, H. Norlen, L. J. O'Riordan, O. Ogunbayo, P. Ollitrault, S. Oud, D. Padilha, H. Paik, S. Perriello, A. Phan, M. Pistoia, A. Pozas-iKerstjens, V. Prutyanov, D. Puzzuoli, J. Pérez, Quintiii, R. Raymond, R. M.-C. Redondo, M. Reuter, D. M. Rodríguez, M. Ryu, T. SAPV, SamFerracin, M. Sandberg, N. Sathaye, B. Schmitt, C. Schnabel, T. L. Scholten, E. Schoute, I. F. Sertage, N. Shammah, Y. Shi, A. Silva, Y. Siraichi, I. Sitdikov, S. Sivarajah, J. A. Smolin, M. Soeken, SooluThomas, D. Steenken, M. Stypulkoski, H. Takahashi, C. Taylor, P. Taylour, S. Thomas, M. Tillet, M. Tod, E. de la Torre, K. Trabing, M. Treinish, TrishaPe, W. Turner, Y. Vaknin, C. R. Valcarce, F. Varchon, D. Vogt-Lee, C. Vuillot, J. Weaver, R. Wieczorek, J. A. Wildstrom, R. Wille, E. Winston, J. J. Woehr, S. Woerner, R. Woo, C. J. Wood, R. Wood, S. Wood, J. Wootton, D. Yeralin, J. Yu, C. Zachow, L. Zdanski, Zoufalc, anedumla, azulehner, bcamorrison, brandhsn, dennis-liu 1, dime10, drholmie, elfrocampeador, faisaldebouni, fanizzamarco, gruu, kanejess, klinvill, kurarrr, lerongil, ma5x, merav aharoni, mrossinek, ordmoj, strickroman, tigerjack, toural, yang.luh & yotamvakninibm (2019): Qiskit: An Open-source Framework for Quantum Computing, doi:10.5281/zenodo.2562110.
  2. D. Basilewitsch, J. Fischer, D. M. Reich, D. Sugny & C. P. Koch (2020): Fundamental Bounds on Qubit Reset. Available at https://arxiv.org/abs/2001.09107.
  3. L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, N. Heckert & J. Dray (2010): A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST SP 800-22 Rev. 1a. National Institute of Standards and Technology, doi:10.6028/NIST.SP.800-22r1a.
  4. J. J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing & J. Bylander (2019): Decoherence benchmarking of superconducting qubits. npj Quantum Information 5, pp. 54, doi:10.1038/s41534-019-0168-5.
  5. A. Dewes, R. Lauro, F. R. Ong, V. Schmitt, P. Milman, P. Bertet, D. Vion & D. Esteve (2012): Quantum speeding-up of computation demonstrated in a superconducting two-qubit processor. Phys. Rev. B 85, pp. 140503, doi:10.1103/PhysRevB.85.140503.
  6. D. J. Egger, M. Werninghaus, M. Ganzhorn, G. Salis, A. Fuhrer, P. Müller & S. Filipp (2018): Pulsed Reset Protocol for Fixed-Frequency Superconducting Qubits. Physical Review Applied 10, pp. 044030, doi:10.1103/PhysRevApplied.10.044030.
  7. J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud & E. Kashefi (2019): Quantum certification and benchmarking. Available at https://arxiv.org/abs/1910.06343.
  8. M. Herrero-Collantes & J. C. Garcia-Escartin (2017): Quantum random number generators. Reviews of Modern Physics 89, pp. 015004, doi:10.1103/RevModPhys.89.015004.
  9. A. Hosoya, K. Maruyama & Y. Shikano (2011): Maxwell's demon and data compression. Physical Review E 84, pp. 061117, doi:10.1103/PhysRevE.84.061117.
  10. S. Kak (1999): The Initialization Problem in Quantum Computing. Foundations of Physics 29, pp. 267–279, doi:10.1023/A:1018877706849.
  11. R. Landauer (1961): Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, pp. 183–191, doi:10.1147/rd.53.0183.
  12. P. L'Ecuyer & R. Simard (2007): TestU01: A C Library for Empirical Testing of Random Number Generators. ACM Transactions on Mathematical Software (TOMS) 33(4), pp. 22, doi:10.1145/1268776.1268777.
  13. X. Ma, X. Yuan, Z. Cao, B. Qi & Z. Zhang (2016): Quantum random number generation. npj Quantum Information 2, pp. 16021, doi:10.1038/npjqi.2016.21.
  14. P. Magnard, P. Kurpiers, B. Royer, T. Walter, J.-C. Besse, S. Gasparinetti, M. Pechal, J. Heinsoo, S. Storz, A. Blais & A. Wallraff (2018): Fast and Unconditional All-Microwave Reset of a Superconducting Qubit. Physical Review Letters 121, pp. 060502, doi:10.1103/PhysRevLett.121.060502.
  15. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson & A. C. Gossard (2005): Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots. Science 309, pp. 2180–2184, doi:10.1126/science.1116955.
  16. D. Ristè, J. G. van Leeuwen, H.-S. Ku, K. W. Lehnert & L. DiCarlo (2012): Initialization by Measurement of a Superconducting Quantum Bit Circuit. Physical Review Letters 109, pp. 050507, doi:10.1103/PhysRevLett.109.050507.
  17. K. Tamura & Y. Shikano (2019): Quantum Random Number Generation with the Superconducting Quantum Computer IBM 20Q Tokyo. In: M. Hirvensalo & A. Yakaryılmaz: Proceedings of Workshop on Quantum Computing and Quantum Information, TUCS Lecture Notes 30, pp. 13–25. Available at http://urn.fi/URN:ISBN:978-952-12-3840-6. Cryptology ePrint Archive, Report 2020/078 https://eprint.iacr.org/2020/078.
  18. K. Tamura & Y. Shikano (2020): Quantum Random Numbers generated by the Cloud Superconducting Quantum Computer. In: T. Takagi, M. Wakayama, K. Tanaka, N. Kunihiro, K. Kimoto & Y. Ikematsu: International Symposium on Mathematics, Quantum Theory, and Cryptography: Proceedings of MQC 2019. Springer Nature. Available at https://arxiv.org/abs/1906.04410. To be published, arXiv:1906.04410.
  19. J. Tuorila, M. Partanen, T. Ala-Nissila & M. Möttönen (2017): Efficient protocol for qubit initialization with a tunable environment. npj Quantum Information 3, pp. 27, doi:10.1038/s41534-017-0027-1.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org