References

  1. A. Abreu, L. Cunha, C. de Figueiredo, L. Kowada, F. Marquezino, D. Posner & R. Portugal (2020): The graph tessellation cover number: Chromatic bounds, efficient algorithms and hardness. Theoretical Computer Science 801, pp. 175 – 191, doi:10.1016/j.tcs.2019.09.013.
  2. D. Aharonov, A. Ambainis, J. Kempe & U. Vazirani (2001): Quantum walks on graphs. In: Proc. 33th STOC. ACM, New York, pp. 50–59, doi:10.1145/380752.380758.
  3. N. Alon (1986): Covering graphs by the minimum number of equivalence relations. Combinatorica 6(3), pp. 201–206, doi:10.1007/BF02579381.
  4. S. Apers, A. Sarlette & F. Ticozzi (2018): Simulation of quantum walks and fast mixing with classical processes. Phys. Rev. A 98, pp. 032115, doi:10.1103/PhysRevA.98.032115.
  5. P. Arnault, A. Macquet, A. Anglés-Castillo, I. Márquez-Martín, V. Pina-Canelles, A. Pérez, G. Di Molfetta, P. Arrighi & F. Debbasch (2019): Quantum simulation of quantum relativistic diffusion via quantum walks. arXiv 1911.09791. Available at https://arxiv.org/abs/1911.09791.
  6. D. W. Berry & L. Novo (2016): Corrected quantum walk for optimal Hamiltonian simulation. Quantum Information and Computation 16, pp. 1295–1317, doi:10.5555/3179439.3179442.
  7. M. Cavers, S.M. Cioaba, S. Fallat, D.A. Gregory, W.H. Haemers, S.J. Kirkland, J.J. McDonald & M. Tsatsomeros (2012): Skew-adjacency matrices of graphs. Linear Algebra and its Applications 436(12), pp. 4512 – 4529, doi:10.1016/j.laa.2012.01.019.
  8. C. Di Franco, M. Mc Gettrick, T. Machida & Th. Busch (2011): Alternate two-dimensional quantum walk with a single-qubit coin. Phys. Rev. A 84, pp. 042337, doi:10.1103/PhysRevA.84.042337.
  9. R. Diestel (2012): Graph Theory. Graduate texts in mathematics 173. Springer, New York, doi:10.1007/978-3-662-53622-3.
  10. C. Godsil & S. Lato (2020): Perfect State Transfer on Oriented Graphs. arXiv 2002.04666. Available at https://arxiv.org/abs/2002.04666.
  11. K. Guo & B. Mohar (2017): Hermitian Adjacency Matrix of Digraphs and Mixed Graphs. Journal of Graph Theory 85(1), pp. 217–248, doi:10.1002/jgt.22057.
  12. S. Hoyer & D. A. Meyer (2009): Faster transport with a directed quantum walk. Phys. Rev. A 79, pp. 024307, doi:10.1103/PhysRevA.79.024307.
  13. N. Konno (2002): Quantum Random Walks in One Dimension. Quantum Information Processing 1(5), pp. 345–354, doi:10.1023/A:1023413713008.
  14. Jianxi Liu & Xueliang Li (2015): Hermitian-adjacency matrices and Hermitian energies of mixed graphs. Linear Algebra and its Applications 466, pp. 182 – 207, doi:10.1016/j.laa.2014.10.028.
  15. D. Lu, J. D. Biamonte, J. Li, H. Li, T. H. Johnson, V. Bergholm, M. Faccin, Z. Zimborás, R. Laflamme, J. Baugh & S. Lloyd (2016): Chiral quantum walks. Phys. Rev. A 93, pp. 042302, doi:10.1103/PhysRevA.93.042302.
  16. D. A. Meyer (1996): From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5), pp. 551–574, doi:10.1007/BF02199356.
  17. A. Montanaro (2007): Quantum walks on directed graphs. Quantum Inf. Comp 7, pp. 93–102. Available at https://arxiv.org/abs/quant-ph/0504116.
  18. R. Portugal (2018): Quantum Walks and Search Algorithms. Springer, Cham, doi:10.1007/978-3-319-97813-0.
  19. R. Portugal, S. Boettcher & S. Falkner (2015): One-dimensional coinless quantum walks. Phys. Rev. A 91, pp. 052319, doi:10.1103/PhysRevA.91.052319.
  20. R. Portugal & T. D. Fernandes (2017): Quantum search on the two-dimensional lattice using the staggered model with Hamiltonians. Phys. Rev. A 95, pp. 042341, doi:10.1103/PhysRevA.95.042341.
  21. R. Portugal, M. C. de Oliveira & J. K. Moqadam (2017): Staggered quantum walks with Hamiltonians. Phys. Rev. A 95, pp. 012328, doi:10.1103/PhysRevA.95.012328.
  22. R. Portugal, R. A. M. Santos, T. D. Fernandes & D. N. Gonçalves (2016): The staggered quantum walk model. Quantum Inf. Process. 15(1), pp. 85–101, doi:10.1007/s11128-015-1149-z.
  23. R. A. M. Santos, R. Portugal & S. Boettcher (2015): Moments of coinless quantum walks on lattices. Quantum Inf. Process. 14(9), pp. 3179–3191, doi:10.1007/s11128-015-1042-9.
  24. S. Severini (2002): The underlying digraph of a coined quantum random walk. Available at https://arxiv.org/abs/quant-ph/0210055.
  25. S. Severini (2003): On the Digraph of a Unitary Matrix. SIAM J. Matrix Anal. Appl. 25(1), pp. 295–300, doi:10.1137/S0895479802410293.
  26. B. Tödtli, M. Laner, J. Semenov, B. Paoli, M. Blattner & J. Kunegis (2016): Continuous-time quantum walks on directed bipartite graphs. Phys. Rev. A 94, pp. 052338, doi:10.1103/PhysRevA.94.052338.
  27. T. G. Wong (2015): Quantum walk search with time-reversal symmetry breaking. J. Phys. A: Math. Theor. 48(40), pp. 405303, doi:10.1088/1751-8113/48/40/405303.
  28. Z. Zimborás, M. Faccin, Z. Kadar, J. Whitfield, B. Lanyon & J. Biamonte (2013): Quantum Transport Enhancement by Time-Reversal Symmetry Breaking. Sci. Rep. 3, pp. 2361, doi:10.1038/srep02361.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org