1. Jaume Agusto-Cullell, Francesc Esteva, Pere Garcia & Lluis Godo (1990): Formalizing Multiple-Valued Logics as Institutions. In: B. Bouchon-Meunier, R. Yager & L. A. Zadeh: Uncertainty in Knowledge Bases, IPMU 90, Lect Notes in Computer Science (512). Springer, pp. 269–278, doi:10.1007/BFb0028112.
  2. Rod Burstall & Razvan Diaconescu (1994): Hiding and behaviour: an institutional approach. In: W. Roscoe: A Classical Mind: Essays in Honour of C.A.R. Hoare. Prentice-Hall, pp. 75–92.
  3. Michel Bidoit & Rolf Hennicker (2006): Constructor-based observational logic. J. Log. Algebr. Program. 67(1-2), pp. 3–51, doi:10.1016/j.jlap.2005.09.002.
  4. Christoph Beierle & Gabriele Kern-Isberner (2002): Looking at Probabilistic Conditionals from an Institutional Point of View. In: WCII, pp. 162–179, doi:10.1007/11408017_10.
  5. Torben Brauner (2010): Hybrid Logic and its Proof-Theory. Applied Logic Series. Springer.
  6. Egon Börger & Robert F. Stärk (2003): Abstract State Machines. A Method for High-Level System Design and Analysis. Springer, doi:10.1007/978-3-642-18216-7.
  7. Corina Cîrstea (2006): An institution of modal logics for coalgebras. J. Log. Algebr. Program. 67(1-2), pp. 87–113, doi:10.1016/j.jlap.2005.09.004.
  8. Balder David ten Cate (2005): Model Theory for Extended Modal Languages. Ph.d. thesis. Institute for Logic, Language and Computation Universiteit van Amsterdam.
  9. Carlos Caleiro, Paulo Mateus, Amílcar Sernadas & Cristina Sernadas (2006): Quantum Institutions. In: K. Futatsugi, J.-P. Jouannaud & J. Meseguer: Essays Dedicated to Joseph A. Goguen, Lecture Notes in Computer Science (4060), pp. 50–64, doi:10.1007/11780274_4.
  10. Razvan Diaconescu (2008): Institution-independent Model Theory. Birkhauser Basel.
  11. Razvan Diaconescu (2011): On quasi-varieties of multiple valued logic models. Math. Log. Q. 57(2), doi:10.1002/malq.200910131.
  12. Razvan Diaconescu & Alexandre Madeira: Encoding Hybridized Institutions into First Order Logic. Submited to a journal.
  13. Joseph A. Goguen & Rod M. Burstall (1992): Institutions: Abstract Model Theory for Specification and Programming. J. ACM 39(1), doi:10.1145/147508.147524.
  14. Siegfried Gottwald (2001): A Treatise on Many-Valued Logics. Studies in Logic and Computation, vol 9. Research Studies Press: Baldock, Hertfordshire, England.
  15. G. Grätzer (1979): Universal Algebra (2nd ed). Springer-Verlag.
  16. Wilfrid Hodges (1997): A shorter model theory. Cambridge University Press, New York, NY, USA.
  17. Saunders Mac Lane (1971): Categories for the Working Mathematician. Graduate Texts in Mathematics 5. Springer-Verlag, doi:10.1007/978-1-4612-9839-7.
  18. Alexandre Madeira (2013 (to appear)): Foundations and techniques for software reconfigurability. Ph.d. thesis. Minho and Aveiro Universities (Joint MAP-i Doctoral Programme).
  19. Alexandre Madeira, José M. Faria, Manuel A. Martins & Luís Soares Barbosa (2011): Hybrid Specification of Reactive Systems: An Institutional Approach. In: G. Barthe, A. Pardo & G. Schneider: Proc. 9th Inter. Conf. Software Engineering and Formal Methods (SEFM 2011), Lect Notes in Computer Science (7041). Springer, pp. 269–285, doi:10.1007/978-3-642-24690-6_19.
  20. Manuel A. Martins, Alexandre Madeira, Razvan Diaconescu & Luís Soares Barbosa (2011): Hybridization of Institutions. In: A. Corradini, B. Klin & C. Cîrstea: Proc. 4th International Conf. on Algebra and Coalgebra in Computer Science (CALCO 2011), Lect Notes in Computer Science (6859). Springer, pp. 283–297, doi:10.1007/978-3-642-22944-2_20.
  21. Till Mossakowski & Markus Roggenbach (2007): Structured CSP: a process algebra as an institution. In: Proc. 18th Inter. Conf. on Recent trends in algebraic development techniques, WADT'06. Springer-Verlag, Berlin, Heidelberg, pp. 92–110, doi:10.1007/978-3-540-71998-4_6.
  22. D. Park (1981): Concurrency and Automata on Infinite Sequences. In: P. Deussen: Proc. Conf. on Theoretical Computer Science. Springer Lect. Notes Comp. Sci. (104), pp. 167–183, doi:10.1007/BFb0017309.
  23. Lutz Schröder & Till Mossakowski (2009): HasCasl: Integrated higher-order specification and program development. Theor. Comput. Sci. 410(12-13), doi:10.1016/j.tcs.2008.11.020.
  24. Donald Sannella & Andrzej Tarlecki (2012): Foundations of Algebraic Specification and Formal Software Development. EATCS Monographs on theoretical computer science. Springer, doi:10.1007/978-3-642-17336-3.

Comments and questions to:
For website issues: