1. T. Arai & G. Moser (2005): Proofs of Termination of Rewrite Systems for Polytime Functions. In: Proceedings of the 25th FSTTCS, LNCS 3821, pp. 529–540, doi:10.1007/11590156_43.
  2. M. Avanzini & U. Dal Lago (2015): On Sharing, Memoization, and Polynomial Time. In: Proceedings of the 32nd STACS, pp. 62–75, doi:10.4230/LIPIcs.STACS.2015.62.
  3. M. Avanzini, N. Eguchi & G. Moser (2011): A Path Order for Rewrite Systems that Compute Exponential Time Functions. In: Proceedings of the 22nd RTA, LIPIcs 10, pp. 123–138, doi:10.4230/LIPIcs.RTA.2011.123.
  4. M. Avanzini, N. Eguchi & G. Moser (2012): A New Order-theoretic Characterisation of the Polytime Computable Functions. In: Proceedings of the 10th APLAS, LNCS 7705, pp. 280–295, doi:10.1007/978-3-642-35182-2_20.
  5. H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, R. Kennaway, M. J. Plasmeijer & M. R. Sleep (1987): Term Graph Rewriting. In: Parallel Architectures and Languages Europe, Volume II 259, pp. 141–158, doi:10.1007/3-540-17945-3_8.
  6. S. Bellantoni & S. A. Cook (1992): A New Recursion-theoretic Characterization of the Polytime Functions. Computational Complexity 2(2), pp. 97–110, doi:10.1007/BF01201998.
  7. G. Bonfante, A. Cichon, J.-Y. Marion & H. Touzet (2001): Algorithms with Polynomial Interpretation Termination Proof. J. Funct. Program. 11(1), pp. 33–53, doi:10.1017/S0956796800003877.
  8. G. Bonfante, J.-Y. Marion & J.-Y. Moyen (2001): On Lexicographic Termination Ordering with Space Bound Certifications. In: The 4th Andrei Ershov Memorial Conference, Revised Papers, pp. 482–493, doi:10.1007/3-540-45575-2_46.
  9. G. Bonfante, J.-Y. Marion & J.-Y. Moyen (2011): Quasi-interpretations A Way to Control Resources. Theor. Comput. Sci. 412(25), pp. 2776–2796, doi:10.1016/j.tcs.2011.02.007.
  10. U. Dal Lago, S. Martini & M. Zorzi (2010): General Ramified Recurrence is Sound for Polynomial Time. In: Patrick Baillot: Proceedings DICE 2010, pp. 47–62, doi:10.4204/EPTCS.23.4.
  11. N. Eguchi (2014): Proving Termination of Unfolding Graph Rewriting for General Safe Recursion. Available at Technical report.
  12. W. G. Handley & S. S. Wainer (1999): Complexity of Primitive Recursion. In: U. Berger & H. Schwichtenberg: Computational Logic, NATO ASI Series F: Computer and Systems Science 165. Springer, pp. 273–300, doi:10.1007/978-3-642-58622-4_8.
  13. D. Leivant (1995): Ramified Recurrence and Computational Complexity I: Word Recurrence and Poly-time. In: Peter Clote & Jeffrey B. Remmel: Feasible Mathematics II, Progress in Computer Science and Applied Logic 13. Birkhäuser Boston, pp. 320–343, doi:10.1007/978-1-4612-2566-9_11.
  14. D. Leivant & J.-Y. Marion (1994): Ramified Recurrence and Computational Complexity II: Substitution and Poly-Space. In: The 8th CSL, Selected Papers, pp. 486–500, doi:10.1007/BFb0022277.
  15. J.-Y. Marion (2003): Analysing the Implicit Complexity of Programs. Information and Computation 183(1), pp. 2–18, doi:10.1016/S0890-5401(03)00011-7.
  16. A. Middeldorp, H. Ohsaki & H. Zantema (1996): Transforming Termination by Self-Labeling. In: Proceedings of the 13th CADE, LNCS 1104, pp. 373–387, doi:10.1007/3-540-61511-3_101.

Comments and questions to:
For website issues: