References

  1. GeoGebra API. Available at http://dev.geogebra.org/trac/wiki/WikiStart.
  2. Géométrix. Available at http://geometrix.free.fr/site/.
  3. Mathway Math Problem Solver. Available at https://www.mathway.com/Algebra.
  4. Vincent Aleven, Kenneth Koedinger, H Colleen Sinclair & Jaclyn Snyder (1998): Combatting shallow learning in a tutor for geometry problem solving. In: Intelligent Tutoring Systems. Springer, pp. 364–373, doi:10.1007/3-540-68716-5_42.
  5. Vincent Aleven & Kenneth R Koedinger (2000): Limitations of student control: Do students know when they need help?. In: Intelligent tutoring systems 1839. Springer, pp. 292–303, doi:10.1007/3-540-45108-0_33.
  6. Vincent Aleven & Kenneth R Koedinger (2013): Knowledge Component (KC) Approaches to Learner Modeling. Design Recommendations for Intelligent Tutoring Systems 1, pp. 165–182.
  7. Vincent Aleven, Bruce Mclaren, Ido Roll & Kenneth Koedinger (2006): Toward meta-cognitive tutoring: A model of help seeking with a Cognitive Tutor. International Journal of Artificial Intelligence in Education 16(2), pp. 101–128.
  8. Vincent AWMM Aleven & Kenneth R Koedinger (2002): An effective metacognitive strategy: Learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive science 26(2), pp. 147–179, doi:10.1207/s15516709cog2602_1.
  9. John R Anderson (1996): ACT: A simple theory of complex cognition.. American Psychologist 51(4), pp. 355, doi:10.1037/0003-066X.51.4.355.
  10. John R Anderson & C Schunn (2000): Implications of the ACT-R learning theory: No magic bullets. Advances in instructional psychology, Educational design and cognitive science, pp. 1–33.
  11. Ivon Arroyo, Carole Beal, Tom Murray, Rena Walles & Beverly P Woolf (2004): Web-based intelligent multimedia tutoring for high stakes achievement tests. In: Intelligent Tutoring Systems. Springer, pp. 142–169, doi:10.1007/978-3-540-30139-4_44.
  12. Nicolas Balacheff, Ricardo Caferra, Michele Cerulli, Nathalie Gaudin, Mirko Maracci, Maria Alessandra Mariotti, Jean-Pierre Muller, Jean-François Nicaud, Michel Occello & Federica Olivero (2003): Baghera Assessment Project, designing an hybrid and emergent educational society.
  13. Yves Baulac (1990): Un micromonde de géométrie, Cabri-géomètre. Université Joseph-Fourier-Grenoble I.
  14. Francisco Botana, Markus Hohenwarter, Predrag Janiči\'c, Zoltán Kovács, Ivan Petrovi\'c, Tomás Recio & Simon Weitzhofer (2015): Automated theorem proving in GeoGebra: Current achievements. Journal of Automated Reasoning 55(1), pp. 39–59, doi:10.1007/s10817-015-9326-4.
  15. Pierre Boutry, Gabriel Braun & Julien Narboux (2016): From Tarski to Descartes: formalization of the arithmetization of euclidean geometry. In: SCSS 2016, the 7th International Symposium on Symbolic Computation in Software Science 39. EasyChair, pp. 15, doi:10.29007/k47p.
  16. Gabriel Braun & Julien Narboux (2017): A synthetic proof of Pappustheorem in Tarskis geometry. Journal of Automated Reasoning 58(2), pp. 209–230, doi:10.1007/s10817-016-9374-4.
  17. Guy Brousseau (2006): Theory of didactical situations in mathematics: Didactique des mathématiques, 1970–1990 19. Springer Science & Business Media, doi:10.1007/0-306-47211-2.
  18. Bruno Buchberger (1988): Applications of Gröbner bases in non-linear computational geometry. In: Trends in computer algebra. Springer, pp. 52–80, doi:10.1007/3-540-18928-9_5.
  19. S-C Chou, X-S Gao & J-Z Zhang (1993): Automated production of traditional proofs for constructive geometry theorems. In: Logic in Computer Science, 1993. LICS'93., Proceedings of Eighth Annual IEEE Symposium on. IEEE, pp. 48–56, doi:10.1109/LICS.1993.287601.
  20. Shang-Ching Chou (1988): An introduction to Wu's method for mechanical theorem proving in geometry. Journal of Automated Reasoning 4(3), pp. 237–267, doi:10.1007/BF00244942.
  21. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (1994): Machine proofs in geometry: Automated production of readable proofs for geometry theorems 6. World Scientific, doi:10.1142/9789812798152_0002.
  22. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (1996): Automated generation of readable proofs with geometric invariants. II. Theorem proving with full-angles. Journal of Automated Reasoning 17(3), pp. 349–370, doi:10.1007/BF00283134.
  23. Helder Coelho & Luis Moniz Pereira (1986): Automated reasoning in geometry theorem proving with Prolog. Journal of Automated Reasoning 2(4), pp. 329–390, doi:10.1007/BF00248249.
  24. Simon El-Khoury, Philippe R Richard, Esma Aïmeur & Josep M Fortuny (2005): Development of an Intelligent Tutorial System to Enhance StudentsMathematical Competence in Problem Solving. In: E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education. Association for the Advancement of Computing in Education (AACE), pp. 2042–2049.
  25. EW Elcock (1977): Representation of knowledge in geometry machine. Machine Intelligence 8, pp. 11–29.
  26. Jean-Claude Falmagne, Eric Cosyn, Jean-Paul Doignon & Nicolas Thiéry (2006): The assessment of knowledge, in theory and in practice. In: Formal concept analysis. Springer, pp. 61–79, doi:10.1007/11671404_4.
  27. Herbert Gelernter, James R Hansen & Donald W Loveland (1960): Empirical explorations of the geometry theorem machine. In: Papers presented at the May 3-5, 1960, western joint IRE-AIEE-ACM computer conference. ACM, pp. 143–149.
  28. James G Greeno (1979): Constructions in Geometry Problem Solving., doi:10.3758/BF03198261.
  29. Markus Hohenwarter (2013): GeoGebra 4.4–From desktops to tablets. Indagatio Didactica 5(1).
  30. Predrag Janicic (2006): GCLC-A Tool for constructive euclidean geometry and more than that. In: ICMS. Springer, pp. 58–73, doi:10.1007/11832225_6.
  31. Stéphanie Jean-Daubias (2000): PÉPITE: un système d'assistance au diagnostic de compétences. Université du Maine.
  32. Deepak Kapur (1986): Using Gröbner bases to reason about geometry problems. Journal of Symbolic Computation 2(4), pp. 399–408, doi:10.1016/S0747-7171(86)80007-4.
  33. K Koedinger (1991): On the design of novel notations and actions to facilitate thinking and learning. In: Proceedings of the International Conference on the Learning Sciences, pp. 266–273.
  34. Kenneth R Koedinger & John R Anderson (1990): Abstract planning and perceptual chunks: Elements of expertise in geometry. Cognitive Science 14(4), pp. 511–550, doi:10.1207/s15516709cog1404_2.
  35. Kenneth R Koedinger & John R Anderson (1993): Effective use of intelligent software in high school math classrooms.
  36. Maria Kordaki & Alexios Mastrogiannis (2006): The potential of multiple-solution tasks in e-learning environments: Exploiting the tools of Cabri Geometry II. In: E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education. Association for the Advancement of Computing in Education (AACE), pp. 97–104.
  37. Alain Kuzniak & Philippe R Richard (2014): Espacios de trabajo matemático. Puntos de vista y perspectivas. Revista latinoamericana de investigación en matemática educativa 17(4), doi:10.12802/relime.13.1741a.
  38. N. Leduc (2016): QED-Tutrix : système tutoriel intelligent pour laccompagnement délèves en situation de résolution de problèmes de démonstration en géométrie plane. École polytechnique de Montréal..
  39. Vanda Luengo (1997): Cabri-Euclide: Un micromonde de Preuve intégrant la réfutation. These de doctorat, INPG, France.
  40. Vanda Luengo (2005): Some didactical and epistemological considerations in the design of educational software: the Cabri-Euclide example. International Journal of Computers for Mathematical Learning 10(1), pp. 1–29, doi:10.1007/s10758-005-4580-x.
  41. Vanda Luengo & Nicolas Balacheff (1998): Contraintes informatiques et environnements d'apprentissage de la démonstration en mathématiques.. Sciences et Techniques Educatives 5, pp. 15–45.
  42. Noboru Matsuda & Kurt Vanlehn (2004): Gramy: A geometry theorem prover capable of construction. Journal of Automated Reasoning 32(1), pp. 3–33, doi:10.1023/B:JARS.0000021960.39761.b7.
  43. Noboru Matsuda & Kurt VanLehn (2005): Advanced Geometry Tutor: An intelligent tutor that teaches proof-writing with construction.. In: AIED 125, pp. 443–450.
  44. Erica Melis, Giorgi Goguadze, Paul Libbrecht & Carsten Ullrich (2009): Activemath–a learning platform with semantic web features. The Future of Learning, pp. 159.
  45. Julien Narboux (2006): Mechanical theorem proving in Tarskis geometry. In: International Workshop on Automated Deduction in Geometry. Springer, pp. 139–156, doi:10.1007/978-3-540-77356-6_9.
  46. Arthur J Nevins (1975): Plane geometry theorem proving using forward chaining. Artificial Intelligence 6(1), pp. 1–23, doi:10.1016/0004-3702(75)90013-2.
  47. D Py (1994): Reconnaissance de plan pour la modélisation de l'élève. Le projet Mentoniezh. Recherches en didactique des mathématiques 14(1/2), pp. 113–138.
  48. Dominique Py (1996): Aide à la démonstration en géométrie: le projet Mentoniezh. Sciences et techniques éducatives 3(2), pp. 227–256.
  49. Dominique Py (2001): Environnements interactifs d'apprentissage et démonstration en géométrie.
  50. Pierre Rabardel (1995): Les hommes et les technologies; approche cognitive des instruments contemporains. Armand Colin.
  51. Philippe R Richard (2004): L'inférence figurale: un pas de raisonnement discursivo-graphique. Educational Studies in Mathematics 57(2), pp. 229–263, doi:10.1023/B:EDUC.0000049272.75852.c4.
  52. Philippe R Richard & Josep M Fortuny (2007): Amélioration des compétences argumentatives à laide dun système tutoriel en classe de mathématique au secondaire. In: Annales de didactique et de sciences cognitives 12, pp. 83–116.
  53. Philippe R Richard, Josep Maria Fortuny, Michel Gagnon, Nicolas Leduc, Eloi Puertas & Michèle Tessier-Baillargeon (2011): Didactic and theoretical-based perspectives in the experimental development of an intelligent tutorial system for the learning of geometry. ZDM 43(3), pp. 425–439, doi:10.1007/s11858-011-0320-y.
  54. P.R. Richard, Michel Gagnon & J. M. Fortuny (2018): Connectedness of Problems and Impass Resolution in the Solving Process in Geometry: a Major Educational Challenge. In: P. Herbst, U.H. Cheah, K. Jones & P.R. Richard: International Perspectives on the Teaching and Learning of Geometry in Secondary Schools. Springer, pp. 311–327.
  55. Ido Roll, Ryan SJ d Baker, Vincent Aleven & Kenneth R Koedinger (2014): On the benefits of seeking (and avoiding) help in online problem-solving environments. Journal of the Learning Sciences 23(4), pp. 537–560, doi:10.1016/S0360-1315(99)00030-5.
  56. M Tessier-Baillargeon (2015): GeoGebraTUTOR : Développement dun système tutoriel autonome pour laccompagnement délèves en situation de résolution de problèmes de démonstration en géométrie plane et genèse dun espace de travail géométrique idoine. Université de Montréal..
  57. Carine Webber, Loris Bergia, Sylvie Pesty & Nicolas Balacheff (2001): The Baghera project: a multi-agent architecture for human learning. In: Workshop-Multi-Agent Architectures for Distributed Learning Environments. In Proceedings International Conference on AI and Education. San Antonio, Texas.
  58. Gerhard Weber & Peter Brusilovsky (2001): ELM-ART: An adaptive versatile system for Web-based instruction. International Journal of Artificial Intelligence in Education (IJAIED) 12, pp. 351–384.
  59. H Wu (1979): An elementary method in the study of nonnegative curvature. Acta Mathematica 142(1), pp. 57–78, doi:10.1007/BF02395057.
  60. Jingzhong Zhang, Lu Yang & Mike Deng (1990): The parallel numerical method of mechanical theorem proving. Theoretical Computer Science 74(3), pp. 253–271, doi:10.1016/0304-3975(90)90077-U.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org