References

  1. B.B. Aldridge, J.M. Burke, D.A. Lauffenburger & P.K. Sorger (2006): Physicochemical modelling of cell signalling pathways. Nat. Cell Biol. 8, pp. 1195–1203, doi:10.1038/ncb1497.
  2. D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, S. Colombo & E. Martegani (2012): The role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J. Bioinf. Syst. Biol. 2012(10).
  3. Y. Cao, D.T. Gillespie & L.R. Petzold (2005): The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122(1), pp. 014116, doi:10.1063/1.1824902.
  4. Y. Cao, D.T. Gillespie & L.R. Petzold (2006): Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124, pp. 044109, doi:10.1063/1.2159468.
  5. G. Caravagna, R. Barbuti & A. d'Onofrio (2012): Fine-tuning anti-tumor immunotherapies via stochastic simulations. BMC Bioinformatics 13(Suppl 4), pp. S8, doi:10.1063/1.1378322.
  6. G. Caravagna, A. d'Onofrio, P. Milazzo & R. Barbuti (2010): Tumour suppression by immune system through stochastic oscillations. J. Theor. Biol. 265(3), pp. 336 – 345, doi:10.1016/j.jtbi.2010.05.013.
  7. G. Caravagna, G. Mauri & A. d'Onofrio (2013): The interplay of intrinsic and extrinsic bounded noises in biomolecular networks. PLOS ONE 8(2), pp. e51174, doi:10.1371/journal.pone.0051174.t006.
  8. P. Cazzaniga, D. Pescini, D. Besozzi, G. Mauri, S. Colombo & E. Martegani (2008): Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools.. J. Biotechnol. 133(3), pp. 377–385, doi:10.1016/j.jbiotec.2007.09.019.
  9. I.C. Chou & E.O. Voit (2009): Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math. Biosci. 219, pp. 57–83, doi:10.1016/j.mbs.2009.03.002.
  10. M.H.A. Davis (1984): Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models. J. Roy. Stat. Soc. B Met. 46(3), pp. pp. 353–388.
  11. A. Eldar & M.B. Elowitz (2010): Functional roles for noise in genetic circuits. Nature 467, pp. 167–173, doi:10.1038/nature09326.
  12. D.T. Gillespie (1977): Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), pp. 2340–2361, doi:10.1021/j100540a008.
  13. T.G. Kurtz (1972): The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57(7), pp. 2976–2978, doi:10.1063/1.1678692.
  14. M.S. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri & D. Pescini (2013): cupSODA: a CUDA-powered simulator of mass-action kinetics. In: Proceedings of 12th International Conference on Parallel Computing Technologies, LNCS 7979. In press.
  15. M.S. Nobile, P. Cazzaniga, D. Besozzi, D. Pescini & G. Mauri: Massive parallel tau-leaping stochastic simulations on GPUs for the analysis of biological systems. Manuscript in preparation.
  16. D. Pescini, P. Cazzaniga, D. Besozzi, G. Mauri, L. Amigoni, S. Colombo & E. Martegani (2012): Simulation of the Ras/cAMP/PKA pathway in budding yeast highlights the establishment of stable oscillatory states. Biotechnol. Adv. 30, pp. 99–107, doi:10.1016/j.biotechadv.2011.06.014.
  17. H. Salis & Y. Kaznessis (2005): Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122, pp. 054103, doi:10.1063/1.1835951.
  18. Z. Szallasi, J. Stelling & V. Periwal (2006): Systems Modeling in Cellular Biology. The MIT Press.
  19. J.M. Thevelein (1994): Signal transduction in yeast. Yeast 10, pp. 1753–1790, doi:10.1002/yea.320101308.
  20. D. Wilkinson (2009): Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 10, pp. 122–133, doi:10.1038/nrg2509.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org