References

  1. HPbenchmarks. Available at http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html.
  2. a a Albrecht, a Skaliotis & K Steinhöfel (2008): Stochastic protein folding simulation in the three-dimensional HP-model.. Computational biology and chemistry 32(4), pp. 248–55, doi:10.1016/j.compbiolchem.2008.03.004. Available at http://www.ncbi.nlm.nih.gov/pubmed/18485827.
  3. CB Anfinsen (1973): Principles that govern the folding of protein chains. Science 181(4096), pp. 223–230. Available at http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract http://web.iitd.ac.in/~amittal/1973_Anfinsen_Science.pdf, doi:10.1126/science.181.4096.223.
  4. K a Dill (1985): Theory for the folding and stability of globular proteins.. Biochemistry 24(6), pp. 1501–9. Available at http://www.ncbi.nlm.nih.gov/pubmed/3986190, doi:10.1021/bi00327a032.
  5. Mehmet T. Gurler, Charles C. Crabb, Deborah M. Dahlin & Jeffrey Kovac (1983): Effect of bead movement rules on the relaxation of cubic lattice models of polymer chains. Macromolecules 16(3), pp. 398–403, doi:10.1021/ma00237a012. Available at http://pubs.acs.org/doi/abs/10.1021/ma00237a012.
  6. WE Hart & S Istrail (1997): Robust proofs of NP-hardness for protein folding: General lattices and energy potentials. Journal of Computational Biology 4(1), pp. 1–22. Available at http://online.liebertpub.com/doi/abs/10.1089/cmb.1997.4.1, doi:10.1089/cmb.1997.4.1.
  7. HP Hsu, Vishal Mehra & Peter Grassberger (2003): Growth algorithms for lattice heteropolymers at low temperatures. The Journal of chemicalłdots. Available at http://link.aip.org/link/?JCPSA6/118/444/1.
  8. Hsiao-Ping Hsu & Peter Grassberger (2011): A Review of Monte Carlo Simulations of Polymers with PERM. Journal of Statistical Physics 144(3), pp. 597–637, doi:10.1007/s10955-011-0268-x. Available at http://www.springerlink.com/index/10.1007/s10955-011-0268-x.
  9. Sorin Istrail & Fumei Lam (2009): Combinatorial algorithms for protein folding in lattice models: A survey of mathematical results. Communications in Information and Systems, pp. 1–40. Available at http://www.cs.brown.edu/people/sorin/pdfs/pfoldingsurvey.pdf.
  10. S Kirkpatrick, DG Jr. & MP Vecchi (1983): Optimization by simulated annealing. science 220(4598), pp. 671–680. Available at http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract http://home.gwu.edu/~stroud/classics/KirkpatrickGelattVecchi83.pdf, doi:10.1126/science.220.4598.671.
  11. Neal Lesh, Michael Mitzenmacher & Sue Whitesides (2003): A complete and effective move set for simplified protein folding. Proceedings of the seventh annual international conference on Computational molecular biology - RECOMB '03, pp. 188–195, doi:10.1145/640075.640099. Available at http://portal.acm.org/citation.cfm?doid=640075.640099.
  12. Faming Liang & Wing Hung Wong (2001): Evolutionary Monte Carlo for protein folding simulations. The Journal of Chemical Physics 115(7), pp. 3374, doi:10.1063/1.1387478. Available at http://link.aip.org/link/JCPSA6/v115/i7/p3374/s1&Agg=doi.
  13. Dorigo M. & Stiitzle T. (2004): Ant Colony Optimization. MIT Press. Available at http://mitpress.mit.edu/books/ant-colony-optimization.
  14. Martin Mann, Sebastian Will & Rolf Backofen (2008): CPSP-tools–exact and complete algorithms for high-throughput 3D lattice protein studies.. BMC bioinformatics 9, pp. 230, doi:10.1186/1471-2105-9-230. Available at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2396640&tool=pmcentrez&rendertype=abstract.
  15. A Piccolboni & G Mauri (1998): Application of evolutionary algorithms to protein folding prediction. In: Lecture Notes in Computer Science 1363, pp. 123–135. Available at http://link.springer.com/chapter/10.1007/BFb0026595.
  16. Swakkhar Shatabda, M a Hakim Newton, Mahmood a Rashid, Duc Nghia Pham & Abdul Sattar (2013): The road not taken: retreat and diverge in local search for simplified protein structure prediction.. BMC bioinformatics 14 Suppl 2(Suppl 2), pp. S19, doi:10.1186/1471-2105-14-S2-S19. Available at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3549842&tool=pmcentrez&rendertype=abstract.
  17. Alena Shmygelska & Holger H Hoos (2005): An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem.. BMC bioinformatics 6, pp. 30, doi:10.1186/1471-2105-6-30. Available at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=555464&tool=pmcentrez&rendertype=abstract.
  18. Thomas Stützle & Holger H. Hoos (2000): Max–Min Ant System. Future Generation Computer Systems 16(8), pp. 889–914, doi:10.1016/S0167-739X(00)00043-1. Available at http://linkinghub.elsevier.com/retrieve/pii/S0167739X00000431.
  19. Chris Thachuk, Alena Shmygelska & Holger H Hoos (2007): A replica exchange Monte Carlo algorithm for protein folding in the HP model.. BMC bioinformatics 8, pp. 342, doi:10.1186/1471-2105-8-342. Available at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2071922&tool=pmcentrez&rendertype=abstract.
  20. Abu Dayem Ullah & Kathleen Steinhöfel (2010): A hybrid approach to protein folding problem integrating constraint programming with local search.. BMC bioinformatics 11 Suppl 1, pp. S39, doi:10.1186/1471-2105-11-S1-S39. Available at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3009511&tool=pmcentrez&rendertype=abstract.
  21. V Černý (1985): Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of optimization theory and applications 45(l), pp. 41–51. Available at http://link.springer.com/article/10.1007/BF00940812, doi:10.1007/BF00940812.
  22. Dong Xu & Yang Zhang (2012): Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins: Structure, Function, and Bioinformatics 80(November 2011), pp. 1715–1735, doi:10.1002/prot.24065. Available at http://doi.wiley.com/10.1002/prot.24065.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org