
U. Golas, T. Soboll (Eds.): Proceedings of ACCAT 2012
EPTCS 93, 2012, pp. 45–59, doi:10.4204/EPTCS.93.3

c© J.-G. Dumas, D. Duval, L. Fousse & J.-C. Reynaud
This work is licensed under the Creative Commons
Attribution-No Derivative Works License.

Decorated proofs for computational effects: States

Jean-Guillaume Dumas∗ Dominique Duval† Laurent Fousse Jean-Claude Reynaud
LJK, Université de Grenoble, France.

{Jean-Guillaume.Dumas, Dominique.Duval, Laurent.Fousse, Jean-Claude Reynaud}@imag.fr

Abstract. The syntax of an imperative language does not mention explicitly the state, while its
denotational semantics has to mention it. In this paper we show that the equational proofs about an
imperative language may hide the state, in the same way as thesyntax does.

Introduction

The evolution of the state of the memory in an imperative program is a computational effect: the state is
never mentioned as an argument or a result of a command, whereas in general it is used and modified dur-
ing the execution of commands. Thus, the syntax of an imperative language does not mention explicitly
the state, while its denotational semantics has to mention it. This means that the state isencapsulated: its
interface, which is made of the functions for looking up and updating the values of the locations, is sep-
arated from its implementation; the state cannot be accessed in any other way than through his interface.
In this paper we show that equational proofs in an imperativelanguage may also encapsulate the state:
proofs can be performed without any knowledge of the implementation of the state. We will see that
a naive approach (called “apparent”) cannot deal with the updating of states, while this becomes possi-
ble with a slightly more sophisticated approach (called “decorated”). This is expressed in an algebraic
framework relying on category theory. To our knowledge, thefirst categorical treatment of computa-
tional effects, using monads, is due to Moggi [Moggi 1991]. The examples proposed by Moggi include
the side-effects monadT(A) = (A×St)St whereSt is the set of states. Later on, Plotkin and Power used
Lawvere theories for dealing with the operations and equations related to computational effects. The
Lawvere theory for the side-effects monad involves seven equations [Plotkin & Power 2002]. In Sec-
tion 1 we describe the intended denotational semantics of states. Then in Section 2 we introduce three
variants of the equational logic for formalizing the computational effects due to the states: theapparent,
decoratedanexplicit logics. This approach is illustrated in Section 3 by provingsome of the equations
from [Plotkin & Power 2002], using rules which do not mentionany type of states.

1 Motivations

This section is made of three independent parts. Section 1.1is devoted to the semantics of states, an
example is presented in Section 1.2, and our logical framework is described in Section 1.3.

∗This work is partly funded by the project HPAC of the French Agence Nationale de la Recherche (ANR 11 BS02 013).
†This work is partly funded by the project CLIMT of the French Agence Nationale de la Recherche (ANR 11 BS02 016).

http://dx.doi.org/10.4204/EPTCS.93.3
http://creativecommons.org
http://creativecommons.org/licenses/by-nd/3.0/

46 Decorated proofs for computational effects: States

1.1 Semantics of states

This section deals with the denotational semantics of states, by providing a set-valued interpretation of
the lookupandupdateoperations. LetSt denote the set ofstates. Let Loc denote the set oflocations
(also calledvariablesor identifiers). For each locationi, let Vali denote the set of possiblevaluesfor i.
For each locationi there is alookupfunction for reading the value of locationi in the given state, without
modifying this state: this corresponds to a functionlookupi,1 : St→ Vali or equivalently to a function
lookupi : St→ Vali ×St such thatlookupi(s) = 〈lookupi,1(s),s〉 for each states. In addition, for each
location i there is anupdatefunction updatei : Vali ×St→ St for setting the value of locationi to the
given value, without modifying the values of the other locations in the given state. This is summarized
as follows, for eachi ∈ Loc: a setVali, two functionslookupi,1 : St→ Vali andupdatei : Vali ×St→ St,
and equations(1):

(1.1) ∀a∈ Vali , ∀s∈ St, lookupi,1(updatei(a,s)) = a ,

(1.2) ∀a∈ Vali , ∀s∈ St, lookupj,1(updatei(a,s)) = lookupj,1(s) for every j ∈ Loc, j 6= i .

The state can be observed thanks to the lookup functions. We may consider the tuple〈lookupi,1〉i∈Loc :
St→ ∏i∈LocVali. If this function is an isomorphism, then Equations (1) provide a definition of the update
functions. In [Plotkin & Power 2002] an equational presentation of states is given, with seven equations:
in Remark 1.1 these equations are expressed according to [Melliès 2010] and they are translated in our
framework. We use the notationsl i = lookupi : St→Vali ×St, l i,1 = lookupi,1 : St→Vali andui = updatei :
Vali ×St→ St, and in additionidi : Vali → Vali andqi : Vali ×St→ St respectively denote the identity of
Vali and the projection, whilepermi, j : Val j ×Vali ×St→ Vali ×Val j ×St permutes its first and second
arguments.

Remark 1.1. The equations in [Plotkin & Power 2002] can be expressed as the following Equations (2):

(2.1) Annihilation lookup-update.Reading the value of a location i and then updating the location i
with the obtained value is just like doing nothing.

∀ i ∈ Loc, ∀s∈ St, ui(l i(s)) = s∈ St

(2.2) Interaction lookup-lookup.Reading twice the same location loc is the same as reading it once.
∀ i ∈ Loc, ∀s∈ St, l i(qi(l i(s))) = l i(s) ∈ Vali ×St

(2.3) Interaction update-update.Storing a value a and then a value a′ at the same location i is just like
storing the value a′ in the location.

∀ i ∈ Loc, ∀s∈ St, ∀a,a′ ∈ Vali , ui(a′,ui(a,s)) = ui(a′,s) ∈ St

(2.4) Interaction update-lookup.When one stores a value a in a location i and then reads the location i,
one gets the value a.

∀ i ∈ Loc, ∀s∈ St, ∀a∈ Vali, l i,1(ui(a,s)) = a∈ Vali

(2.5) Commutation lookup-lookup.The order of reading two different locations i and j does not matter.
∀ i 6= j ∈ Loc, ∀s∈ St, (idi × l j)(l i(s)) = permi, j((id j × l i)(l j(s))) ∈ Vali ×Valj ×St

(2.6) Commutation update-update.The order of storing in two different locations i and j does not matter.
∀ i 6= j ∈ Loc, ∀s∈ St, ∀a∈ Vali , ∀b∈ Val j , u j(b,ui(a,s)) = ui(a,u j (b,s)) ∈ St

(2.7) Commutation update-lookup.The order of storing in a location i and reading in another location j
does not matter.

∀ i 6= j ∈ Loc, ∀s∈ St, ∀a∈ Vali , l j(ui(a,s)) = (id j ×ui)(permj,i(a, l j (s))) ∈ Val j ×St

Proposition 1.2. Let us assume that〈l i,1〉i∈Loc : St→ ∏i∈LocVali is invertible. Then Equations (1) are
equivalent to Equations (2).

J.-G. Dumas, D. Duval, L. Fousse & J.-C. Reynaud 47

Proof. It may be observed that (2.4) is exactly (1.1). In addition, (2.7) is equivalent to (1.2) : indeed,
(2.7) is equivalent to the conjunction of its projection onVal j and its projection onSt; the first one is
l j,1(ui(a,s)) = l j,1(s), which is (1.2), and the second one isui(a,s) = ui(a,s). Equations (2.2) and (2.5)
follow from qi(l i(s)) = s. For the remaining equations (2.1), (2.3) and (2.6), which return states, it is
easy to check that for each locationk, by applyinglk to both members and using equation (1.1) or (1.2)
according tok, we get the same value inValk for both hand-sides. Then equations (2.1), (2.3) and (2.6)
follow from the fact that〈l i,1〉i∈Loc : St→ ∏i∈LocVali is invertible.

Proposition 1.2 will be revisited in Section 3, where it willbe proved that equations (1) imply equa-
tions (2) without ever mentioning explicitly the state in the proof.

1.2 Computational effects: an example

In an informal way, we consider that a computational effect occurs when there is an apparent mismatch,
i.e., some lack of soundness, between the syntax and the denotational semantics of a language. For
instance in an object-oriented language, the state of an object does not appear explicitly as an argument
nor as a result of any of its methods. In this section, as a toy example, we build a classBankAccount
for managing (very simple!) bank accounts. We use the typesint andvoid, and we assume thatint
is interpreted by the set of integersZ andvoid by a singleton{⋆}. In the classBankAccount, there is
a methodbalance() which returns the current balance of the account and a methoddeposit(x) for
the deposit ofx Euros on the account. Thedeposit method is amodifier, which means that it can use
and modify the state of the current account. Thebalance method is aninspector, or anaccessor, which
means that it can use the state of the current account but it isnot allowed to modify this state. In the
object-oriented languageC++, a method is called amember function; by default a member function is a
modifier, when it is an accessor it is called aconstant member functionand the keywordconst is used.
So, theC++ syntax for declaring the member functions of the classBankAccount looks like:

int balance () const ;
void deposit (int) ;

• Forgetting the keywordconst, this piece ofC++ syntax can be translated as a signatureBankapp,
which we call theapparent signature(we use the word “apparent” in the sense of “seeming” i.e.,
“appearing as such but not necessarily so”).

Bankapp :

{

balance : void→ int

deposit : int→ void

In a model (or algebra) of the signatureBankapp, the operations would be interpreted as functions:

{

[[balance]] : {⋆} → Z

[[deposit]] : Z →{⋆}

which clearly is not the intended interpretation.

• In order to get the right semantics, we may use another signature Bankexpl, which we call the
explicit signature, with a new symbolstate for the “type of states”:

Bankexpl :

{

balance : state→ int

deposit : int×state→ state

48 Decorated proofs for computational effects: States

The intended interpretation is a model of the explicit signature Bankexpl, with St denoting the set
of states of a bank account:

{

[[balance]] : St→ Z

[[deposit]] : Z×St→ St

So far, in this example, we have considered two different signatures. On the one hand, the apparent
signatureBankapp is simple and quite close to theC++ code, but the intended semantics is not a model of
Bankapp. On the other hand, the semantics is a model of the explicit signatureBankexpl, but Bankexpl is
far from theC++ syntax: actually, the very nature of the object-oriented language is lost by introducing
a “type of states”. Let us now define adecorated signature Bankdeco, which is still closer to theC++
code than the apparent signature and which has a model corresponding to the intended semantics. The
decorated signature is not exactly a signature in the classical sense, because there is a classification of its
operations. This classification is provided by superscripts calleddecorations: the decorations(1) and
(2) correspond respectively to the object-oriented notions ofaccessorandmodifier.

Bankdeco:

{

balance(1) : void→ int

deposit(2) : int→ void

The decorated signature is similar to theC++ code, with the decoration(1) corresponding to the keyword
const. The apparent specificationBankappmay be recovered fromBankdecoby dropping the decorations.
In addition, we claim that the intended semantics can be seenas adecorated modelof this decorated
signature: this will become clear in Section 2.3. In order toadd to the signature constants of type
int like 0, 1, 2, . . . and the usual operations on integers, a third decoration is used: the decoration
(0) for pure functions, which means, for functions which neither inspect nor modify the state of the
bank account. So, we add to the apparent and explicit signatures the constants0, 1, . . . :void→ int

and the operations+, -, ∗ : int×int→ int, and we add to the decorated signature the pure constants
0(0), 1(0), . . . :void→ int and the pure operations+(0), -(0),∗(0) : int×int→ int. For instance the
C++ expressionsdeposit(7); balance() and7 + balance() can be seen as the decorated terms:

balance(1) ◦deposit(2) ◦7(0) and +(0) ◦ 〈7(0),balance(1)〉

which may be illustrated as:

void
7(0)

// int
deposit(2)

// void
balance(1)

// int

and void
〈7(0),balance(1)〉

// int×int
+(0)

// int

These two decorated terms have different effects: the first one does modify the state while the second
one is an accessor; however, both return the same integer. Let us introduce the symbol∼ for the relation
“same result, maybe distinct effects”. Then:

balance(1) ◦deposit(2) ◦7(0) ∼ +(0) ◦ 〈7(0),balance(1)〉

1.3 Diagrammatic logics

In this paper, in order to deal with a relevant notion of morphisms between logics, we define alogic as
a diagrammatic logic, in the sense of [Domı́nguez & Duval 2010]. For the purpose ofthis paper let us
simply say that a logicL determines a category of theoriesT which is cocomplete, and that a morphism

J.-G. Dumas, D. Duval, L. Fousse & J.-C. Reynaud 49

of logics is a left adjoint functor, so that it preserves the colimits. The objects ofT are called the a
theoriesof the logicL . Quite often,T is a category of structured categories. Theinference rulesof the
logic L describe the structure of its theories. When a theoryΦ is generated by some presentation or
specificationΣ, amodelof Σ with values in a theoryΘ is a morphismM : Φ → Θ in T.

The monadic equational logic. For instance, and for future use in the paper, here is the way we
describe themonadic equational logicLmeqn. In order to focus on the syntactic aspect of the theories,
we use a congruence symbol “≡” rather than the equality symbol “=”. Roughly speaking, a monadic
equational theory is a sort of category where the axioms holdonly up to congruence (in fact, it is a 2-
category). Precisely, amonadic equational theoryis a directed graph (its vertices are calledobjectsor
typesand its edges are calledmorphismsor terms) with anidentity term idX : X → X for each typeX and
a composedterm g◦ f : X → Z for each pair of consecutive terms(f : X → Y,g : Y → Z); in addition
it is endowed withequations f≡ g : X → Y which form acongruence, which means, an equivalence
relation on parallel terms compatible with the composition; this compatibility can be split in two parts:
substitutionandreplacement. In addition, the associativity and identity axioms hold upto congruence.
These properties of the monadic equational theories can be described by a set ofinference rules, as in
Figure 1.

(id)
X

idX : X → X
(comp)

f : X →Y g: Y → Z
g◦ f : X → Z

(id-src)
f : X →Y
f ◦ idX ≡ f

(id-tgt)
f : X →Y

idY ◦ f ≡ f
(assoc)

f : X →Y g: Y → Z h : Z →W
h◦ (g◦ f)≡ (h◦g)◦ f

(≡-refl)
f ≡ f

(≡-sym)
f ≡ g
g≡ f

(≡-trans)
f ≡ g g≡ h

f ≡ h

(≡-subs)
f : X →Y g1 ≡ g2 : Y → Z

g1◦ f ≡ g2 ◦ f : X → Z
(≡-repl)

f1 ≡ f2 : X →Y g: Y → Z
g◦ f1 ≡ g◦ f2 : X → Z

Figure 1: Rules of the monadic equational logic

Adding products to the monadic equational logic. In contrast with equational theories, the existence
of products is not required in a monadic equational theory. However some specific products may exist.
A product in a monadic equational theoryT is “up to congruence”, in the following sense. Let(Yi)i∈I

be a family of objects inT, indexed by some setI . A productwith base(Yi)i∈I is a cone(qi : Y →Yi)i∈I

such that for every cone(fi : X →Yi)i∈I on the same base there is a termf = 〈 fi〉i∈I : X →Y such that
qi ◦ f ≡ fi for eachi, and in addition this term is unique up to congruence, in the sense that ifg : X →Y
is such thatqi ◦g≡ fi for eachi theng≡ f . WhenI is empty, we get aterminalobject1, such that for
everyX there is an arrow〈〉X : X → 1 which is unique up to congruence. The corresponding inference
rules are given in Figure 2. The quantification “∀i”, or “∀i ∈ I ”, is a kind of “syntactic sugar”: when
occuring in the premisses of a rule, it stands for a conjunction of premisses.

50 Decorated proofs for computational effects: States

When(qi : Y →Yi)i∈I is a product:

(tuple)
(fi :X →Yi)i

〈 fi〉i :X →Y
(tuple-proj-i)

(fi :X →Yi)i

qi ◦ 〈 f j〉 j ≡ fi
(tuple-unique)

g : X →Y ∀i qi ◦g≡ fi
g≡ 〈 f j〉 j

When1 is a terminal type (“empty product”):

(final)
X

〈〉X : X → 1
(final-unique)

g : X → 1

g≡ 〈〉X

Figure 2: Rules for products

2 Three logics for states

In this section we introduce three logics for dealing with states as computational effects. This generalizes
the example of the bank account in Section 1.2. We present first the explicit logic (close to the semantics),
then the apparent logic (close to the syntax), and finally thedecorated logic and the morphisms from the
decorated logic to the apparent and the explicit ones. In thesyntax of an imperative language there is no
type of states (the state is “hidden”) while the interpretation of this language involves a set of statesSt.
More precisely, if the typesX andY are interpreted as the sets[[X]] and[[Y]], then each termf : X →Y
is interpreted as a function[[f]] : [[X]]×St→ [[Y]]×St. In Moggi’s paper introducing monads for effects
[Moggi 1991] such a termf : X →Y is called acomputation, and whenever the function[[f]] is [[f]]0×
idSt for some[[f]]0 : [[X]]→ [[Y]] then f is called avalue. We keep this distinction, usingmodifierand
pure terminstead ofcomputationandvalue, respectively. In addition, anaccessor(or inspector) is a term
f : X →Y that is interpreted by a function[[f]] = 〈[[f]]1,qX〉, for some[[f]]1 : [[X]]×St→ [[Y]], where
qX : [[X]]×St→ St is the projection. It follows that every pure term is an accessor and every accessor is a
modifier. We will respectively use the decorations(0), (1) and(2), written as superscripts, for pure terms,
accessors and modifiers. Moreover, we distinguish two kindsof equations: whenf ,g : X →Y are parallel
terms, then astrongequation f ≡ g is interpreted as the equality[[f]] = [[g]] : [[X]]×St→ [[Y]]×St,
while aweakequationf ∼ g is interpreted as the equalitypY ◦ [[f]] = pY ◦ [[g]] : [[X]]×St→ [[Y]], where
pY : [[Y]]×St→ [[Y]] is the projection. Clearly, strong and weak equations coincide on accessors and on
pure terms, while they differ on modifiers. As in Section 1.1,we consider some given set of locationsLoc
and for each locationi a setVali of possible values fori. Theset of statesis defined asSt= ∏i∈LocVali ,
and the projections are denoted bylookupi,1 : St→ Vali . For each locationi, let updatei : Vali ×St→ St
be defined by Equations (1) as in Section 1.1. In order to focuson the fundamental properties of states
as effects, the three logics for states are based on the “poor” monadic equational logic (as described in
Section 1.3).

2.1 The explicit logic for states

The explicit logic for statesLexpl is a kind of “pointed” monadic equational logic: a theoryΘexpl for
Lexpl is a monadic equational theory with a distinguished objectS, called thetype of states, and with a
product-with-S functorX×S. As in Section 1.2, the explicit logic provides the relevantsemantics, but it
is far from the syntax. The explicit theory for statesStateexpl is generated by a typeVi and an operation
l i,1 : S→Vi for each locationi, which form a product(l i,1 : S→Vi)i∈Loc. Thus, for each locationi there

J.-G. Dumas, D. Duval, L. Fousse & J.-C. Reynaud 51

is an operationui : Vi ×S→ S, unique up to congruence, which satisfies the equations below (where
pi : Vi ×S→Vi andqi : Vi ×S→ Sare the projections):

Stateexpl :

operations l i,1 : S→Vi , ui : Vi ×S→ S

product (l i,1 : S→Vi)i∈Loc

equations l i,1 ◦ui ≡ pi : Vi ×S→Vi , l j,1 ◦ui ≡ l j,1 ◦qi : Vi ×S→Vj for each j 6= i

Let us define the explicit theorySetexpl as the category of sets with the equality as congruence and with the
set of statesSt= ∏ j∈LocVal j as its distinguished set. The semantics of states, as described in Section 1.1,
is the modelMexpl : Stateexpl → Setexpl which maps the typeVi to the setVali for eachi ∈ Loc, the typeS
to the setSt, and the operationsl i,1 andui to the functionslookupi,1 andupdatei, respectively.

2.2 The apparent logic for states

Theapparent logic for statesLapp is the monadic equational logic (Section 1.3). As in Section1.2, the
apparent logic is close to the syntax but it does not provide the relevant semantics. Theapparent theory
for states Stateapp can be obtained from the explicit theoryStateexpl by identifying the type of statesS
with the unit type1. So, there is inStateapp a terminal type1 and for each locationi a typeVi for the
possible values ofi and an operationl i : 1 →Vi for observing the value ofi. A set-valued model for this
part ofStateapp, with the constraint that for eachi the interpretation ofVi is the given setVali , is made of
an elementai ∈ Vali for eachi (it is the image of the interpretation ofl i). Thus, such a model corresponds
to a state, made of a value for each location; this is known as thestates-as-modelsor states-as-algebras
point of view [Gaudel et al. 1996]. In addition, it is assumedthat inStateapp the operationsl i ’s form a
product(l i : 1 →Vi)i∈Loc. This assumption implies that eachl i is an isomorphism, so that eachVi must
be interpreted as a singleton: this does not fit with the semantics of states. However, we will see in
Section 2.3 that this assumption becomes meaningful when decorations are added, in a similar way as in
the bank example in Section 1.2. Formally, the assumption that (l i : 1 →Vi)i∈Loc is a product provides
for each locationi an operationui : Vi → 1, unique up to congruence, which satisfies the equations below
(whereidi : Vi →Vi is the identity and〈〉i = 〈〉Vi : Vi → 1) :

Stateapp :

operations l i : 1 →Vi , ui : Vi → 1

product (l i : 1 →Vi)i∈Loc with terminal type1

equations l i ◦ui ≡ idi : Vi →Vi , l j ◦ui ≡ l j ◦ 〈〉i : Vi →Vj for each j 6= i

At first view, these equations mean that afterui(a) is executed, the value ofi is put toa and the value ofj
(for j 6= i) is unchanged. However, as noted above, this intuition is not supported by the semantics in the
apparent logic. However, the apparent logic can be used for checking the validity of a decorated proof,
as explained in Section 2.4.

2.3 The decorated logic for states

Now, as in Section 1.2, we introduce a third logic for states,which is close to the syntax and which
provides the relevant semantics. It is defined by adding “decorations” to the apparent logic. A theory
Θdeco for thedecorated logic for statesLdeco is made of:

• A monadic equational theoryΘ(2). The terms inΘ(2) may be called themodifiersand the equations
f ≡ g may be called thestrong equations.

52 Decorated proofs for computational effects: States

• Two additional monadic equational theoriesΘ(0) andΘ(1), with the same types asΘ(2), and such
thatΘ(0) ⊆ Θ(1) ⊆ Θ(2) and the congruence onΘ(0) and onΘ(1) is the restriction of the congruence
on Θ(2). The terms inΘ(1) may be called theaccessors, and if they are inΘ(0) they may be called
thepure terms.

• A second equivalence relation∼ between parallel terms inΘ(2), which is only “weakly” compati-
ble with the composition; the relation∼ satisfies the substitution property but only a weak version
of the replacement property, called thepure replacement: if f1 ∼ f2 : X →Y andg : Y → Z then in
generalg◦ f1 6∼ g◦ f2, except wheng is pure. The relationsf ∼ g are called theweak equations.
It is assumed that every strong equation is a weak equation and that every weak equation between
accessors is a strong equation, so that the relations≡ and∼ coincide onΘ(0) and onΘ(1).

We use the following notations, calleddecorations: a pure termf is denotedf (0), an accessorf is
denotedf (1), and a modifierf is denotedf (2); this last decoration is unnecessary since every term is a
modifier, however it may be used for emphasizing. Figure 3 provides thedecorated rules, which describe
the properties of the decorated theories. For readability,the decoration properties may be grouped with
other properties: for instance, “f (1) ∼ g(1)” means “f (1) andg(1) and f ∼ g”.

Rules of the monadic equational logic, and:

(0-id)
X

id(0)
X : X → X

(0-comp)
f (0) g(0)

(g◦ f)(0)
(0-to-1)

f (0)

f (1)
(1-comp)

f (1) g(1)

(g◦ f)(1)

(1-∼-to-≡)
f (1) ∼ g(1)

f ≡ g
(≡-to-∼)

f ≡ g
f ∼ g

(∼-refl)
f ∼ f

(∼-sym)
f ∼ g
g∼ f

(∼-trans)
f ∼ g g∼ h

f ∼ h

(∼-subs)
f : X →Y g1 ∼ g2 : Y → Z

g1 ◦ f ∼ g2◦ f : X → Z
(0-∼-repl)

f1 ∼ f2 : X →Y g(0) : Y → Z
g◦ f1 ∼ g◦ f2 : X → Z

Figure 3: Rules of the decorated logic for states

Some specific kinds of products may be used in a decorated theory, for instance:

• A distinguished type1 with the followingdecorated terminalityproperty: for each typeX there is
a pure term〈〉X : X → 1 such that every modifierg : X → 1 satisfiesg∼ 〈〉X. It follows from the
properties of weak equations that1 is a terminal type inΘ(0) and inΘ(1).

• An observational productwith base(Yi)i∈I is a cone of accessors(qi :Y →Yi)i∈I such that for every
cone of accessors(fi : X →Yi)i∈I on the same base there is a modifierf = 〈 fi〉i∈I : X →Y such that
qi ◦ f ∼ fi for eachi, and in addition this modifier is unique up to strong equations, in the sense
that if g : X →Y is a modifier such thatqi ◦g∼ fi for eachi theng≡ f . An observational product
allows to prove strong equations from weak ones: by looking at the results of some observations,
thanks to the properties of the observational product, we get information on the state.

J.-G. Dumas, D. Duval, L. Fousse & J.-C. Reynaud 53

When1 is a decorated terminal type:

(0-final)
X

〈〉
(0)
X : X → 1

(∼-final-unique)
g : X → 1

g∼ 〈〉X

When(q(1)i : Y →Yi)i is an observational product: (obs-tuple)
(f (1)i :X →Yi)i

〈 fi〉
(2)
i :X →Y

(obs-tuple-proj-i)
(f (1)i :X →Yi)i

qi ◦ 〈 f j〉 j ∼ fi
(obs-tuple-unique)

g(2) :X →Y ∀i qi ◦g∼ f (1)i

g≡ 〈 f j〉 j

Figure 4: Rules for some decorated products for states

The decorated theory of statesStatedeco is generated by a typeVi and an accessorl (1)i : 1 → Vi for

eachi ∈ Loc, which form an observational product(l (1)i : 1→Vi)i∈Loc. The modifiersui ’s are defined (up
to strong equations), using the property of the observational product, by the weak equations below:

Statedeco:

operations l (1)i : 1 →Vi , u(2)i : Vi → 1

observational product (l (1)i : 1 →Vi)i∈Loc with decorated terminal type1

equations l i ◦ui ∼ idi : Vi →Vi , l j ◦ui ∼ l j ◦ 〈〉i : Vi →Vj for each j 6= i

The decorated theory of setsSetdeco is built from the category of sets, as follows. There is inSetdeco

a type for each set, a modifierf (2) : X → Y for each functionf : X ×St→ Y×St, an accessorf (1) :
X → Y for each functionf : X ×St→ Y, and a pure termf (0) : X → Y for each functionf : X → Y,
with the straightforward conversions. Letf (2),g(2) : X → Y corresponding tof ,g : X ×St→ Y ×St.
A strong equationf ≡ g is an equality f = g : X ×St→ Y ×St, while a weak equationf ∼ g is an
equality p◦ f = p◦ g : X ×St→ Y, wherep : Y ×St→ Y is the projection. For each locationi the
projection lookupi : St→ Vali corresponds to an accessorlookup(1)i : 1 → Vali in Setdeco, so that the

family (lookup(1)i)i∈Loc forms an observational product inSetdeco. We get a modelMdecoof Statedecowith

values inSetdecoby mapping the typeVi to the setVali and the accessorl (1)i to the accessorlookup(1)i , for

eachi ∈ Loc. Then for eachi the modifieru(2)i is mapped to the modifierupdate(2)i .

2.4 From decorated to apparent

Every decorated theoryΘdeco gives rise to an apparent theoryΘapp by dropping the decorations, which
means that the apparent theoryΘapp is made of a typeX for each typeX in Θdeco, a term f : X →Y for
each modifierf : X → Y in Θdeco (which includes the accessors and the pure terms), and an equation
f ≡ g for each weak equationf ∼ g in Θdeco (which includes the strong equations). Thus, the distinction
between modifiers, accessors and pure terms disappears, as well as the distinction between weak and
strong equations. Equivalently, the apparent theoryΘapp can be defined as the apparent theoryΘ(2)

together with an equationf ≡ g for each weak equationf ∼ g in Θdeco which is not associated to a
strong equation inΘdeco(otherwise, it is yet inΘ(2)). Thus, a decorated terminal type inΘdecobecomes a
terminal type inΘapp and an observational product(q(1)i : Y →Yi)i in Θdecobecomes a product(qi : Y →

54 Decorated proofs for computational effects: States

Yi)i in Θapp. In the same way, each rule of the decorated logic is mapped toa rule of the apparent logic
by dropping the decorations. This property can be used for checking a decorated proof in two steps, by
checking on one side the undecorated proof and on the other side the decorations. This construction of
Θapp from Θdeco, by dropping the decorations, is a morphism fromLdeco to Lapp, denotedFapp.

2.5 From decorated to explicit

Every decorated theoryΘdeco gives rise to an explicit theoryΘexpl by expandingthe decorations, which
means that the explicit theoryΘexpl is made of:

• A typeX for each typeX in Θdeco; projections are denoted bypX : X×S→ X andqX : X×S→ S.

• A term f : X×S→Y×Sfor each modifierf : X →Y in Θdeco, such that:

– if f is an accessor then there is a termf1 : X×S→Y in Θexpl such thatf = 〈 f1,qX〉,

– if moreover f is a pure term then there is a termf0 : X →Y in Θexpl such thatf1 = f0 ◦ pX :
X×S→Y, hencef = 〈 f0◦ pX ,qX〉= f0× idS in Θexpl.

• An equationf ≡ g : X×S→Y×Sfor each strong equationf ≡ g : X →Y in Θdeco.

• An equationpY ◦ f ≡ pY ◦g : X×S→Y for each weak equationf ∼ g : X →Y in Θdeco.

• A product(qi,1 : Y×S→Yi)i for each observational product(q(1)i : Y →Yi)i in Θdeco.

This construction ofΘexpl from Θdeco is a morphism fromLdeco to Lexpl, denotedFexpl and called the
expansion. The expansion morphism makes explicit the meaning of the decorations, by introducing a
“type of states”S. Thus, each modifierf (2) gives rise to a termf which may use and modify the state,
while wheneverf (1) is an accessor thenf may use the state but is not allowed to modify it, and when
moreoverf (0) is a pure term thenf may neither use nor modify the state. Whenf (2) ≡ g(2) then f and
g must return the same result and the same state; whenf (2) ∼ g(2) then f andg must return the same
result but maybe not the same state. We have seen that the semantics of states cannot be described in
the apparent logic, but can be described both in the decorated logic and in the explicit logic. It should
be reminded that every morphism of logics is a left adjoint functor. This is the case for the expansion
morphismFexpl : Ldeco→Lexpl: it is a left adjoint functorFexpl : Tdeco→Texpl, its right adjoint is denoted
Gexpl. In fact, it is easy to check thatSetdeco= Gexpl(Setexpl), and sinceStateexpl = Fexpl(Statedeco) it
follows that the decorated modelMdeco : Statedeco→ Setdeco and the explicit modelMexpl : Stateexpl →
Setexpl are related by the adjunctionFexpl ⊣ Gexpl. This means that the modelsMdeco andMexpl are two
different ways to formalize the semantics of states from Section 1.1. In order to conclude Section 2, the
morphims of logicFapp andFexpl are summarized in Figure 5.

3 Decorated proofs

The inference rules of the decorated logicLdeco are now used for proving some of the Equations (2) (in
Remark 1.1). All proofs in this section are performed in the decorated logic; for readability the identity
and associativity rules (id-src) , (id-tgt) and (assoc) areomitted. Some derived rules are proved in
Section 3.1, then Equation (2.1) is proved in Section 3.2. Inorder to deal with the equations with two
values as argument or as result, we use the semi-pure products introduced in [Dumas et al. 2011]; the
rules for semi-pure products are reminded in Section 3.3, then all seven Equations (2) are expressed in
the decorated logic and Equation (2.6) is proved in Section 3.4. Proving the other equations would be
similar. We use as axioms the fact thatl i is an accessor and the weak equations inStatedeco(Section 2.3).

J.-G. Dumas, D. Duval, L. Fousse & J.-C. Reynaud 55

Θapp Θdeco
Fapp

oo
Fexpl

// Θexpl

f : X →Y modifier f : X →Y f : X×S→Y×S
f : X →Y accessor f (1) : X →Y f1 : X×S→Y
f : X →Y pure term f (0) : X →Y f0 : X →Y

f ≡ g : X →Y strong equation f ≡ g : X →Y f ≡ g : X×S→Y×S
f ≡ g : X →Y weak equation f ∼ g : X →Y pY ◦ f ≡ pY ◦g : X×S→Y

Figure 5: A span of logics for states

3.1 Some derived rules

Let us now derive some rules from the rules of the decorated logic (Figures 3 and 4).

(E(1)
1)

f (1) : X → 1

f ≡ 〈〉X
(E(0)

1)
f (0) : X → 1

f ≡ 〈〉X

(E(1)
2)

f (1) : X → 1 g(1) : X → 1

f ≡ g
(E(0)

2)
f (0) : X → 1 g(0) : X → 1

f ≡ g

(E(1)
3)

f (1) : X →Y g(1) : Y → 1 h(1) : X → 1

g◦ f ≡ h
(E(0)

3)
f (0) : X →Y g(0) : Y → 1 h(0) : X → 1

g◦ f ≡ h

(E(1)
4)

f (1) : 1 → X
〈〉X ◦ f ≡ id1

(E(0)
4)

f (0) : 1 → X
〈〉X ◦ f ≡ id1

Figure 6: Some derived rules in the decorated logic for states

Proof. The derived rules in the left part of Figure 6 can be proved as follows. The proof of the rules in
the right part are left to the reader.

f (1)

X(0-final)
〈〉

(0)
X(0-to-1)

〈〉
(1)
X

f : X → 1
(∼-final-unique)

f ∼ 〈〉X
(1-∼-to-≡)

f ≡ 〈〉X (E(1)
1)

f (1) :1→X
(E(1)

1)
f ≡ 〈〉1

g(1) :1→X
(E(1)

1)
g≡ 〈〉1

(≡-sym)
〈〉1 ≡ g

(≡-trans)
f ≡ g (E(1)

2)

f (1) :X→Y g(1) :Y→1
(1-comp)

(g◦ f)(1) :X→1 h(1) :X→1
(E(1)

2)
g◦ f ≡ h (E(1)

3)

f (1) : 1 → X

X(0-final)
〈〉

(0)
X : X → 1

(0-to-1)
〈〉

(1)
X : X → 1

1(0-id)
id(0)

1
: 1 → 1

(0-to-1)
id(1)

1
: 1 → 1

(E(1)
3)

〈〉X ◦ f ≡ id1 (E(1)
4)

56 Decorated proofs for computational effects: States

3.2 Annihilation lookup-update

It is easy to check that the decorated equationu(2)i ◦ l (1)i ≡ id(0)
1

gets expanded asui ◦ l i ≡ idS, which
clearly gets interpreted as Equation (2.1) in Remark 1.1. Let us prove this decorated equation, using the
axioms (for each locationi), from Statedeco in Section 2.3:

(A0) l (1)i , (A1) l i ◦ui ∼ idi , (A2) l j ◦ui ∼ l j ◦ 〈〉i for each j 6= i .

Proposition 3.1. For each location i , reading the value of a location i and thenupdating the location i
with the obtained value is just like doing nothing.

u(2)i ◦ l (1)i ≡ id(0)
1

: 1 → 1 .

Proof. Let i be a location. Using the unicity property of the observational product, we have to prove that
lk ◦ui ◦ l i ∼ lk : 1 →Vk for each locationk.

• Whenk= i, the substitution rule for∼ yields:

(A1) l i ◦ui ∼ idi
(∼-subs)

l i ◦ui ◦ l i ∼ l i

• Whenk 6= i, using the substitution rule for∼ and the replacement rule for≡ we get:

(A2) lk ◦ui ∼ lk ◦ 〈〉i
(∼-subs)

lk ◦ui ◦ l i ∼ lk ◦ 〈〉i ◦ l i

(A0) l (1)i
(E(1)

4)
〈〉i ◦ l i ≡ id1(≡-repl)

lk ◦ 〈〉i ◦ l i ≡ lk(≡-to-∼)
lk ◦ 〈〉i ◦ l i ∼ lk(∼-trans)

lk ◦ui ◦ l i ∼ lk

Remark 3.2. At the top of the right branch in the proof above, the decoration (1) for l i could not be

replaced by(2). Indeed, froml (2)i we can derive the weak equation〈〉i ◦ l i ∼ id1, but this is not sufficient
for deriving lk ◦ 〈〉i ◦ l i ∼ lk by replacement sincelk is not pure.

3.3 Semi-pure products

Let Θdeco be a theory with respect to the decorated logic for states andlet Θ(0) be its pure part, so
that Θ(0) is a monadic equational theory. Theproduct of two typesX1 and X2 in Θdeco is defined as
their product inΘ(0) (it is a product up to strong equations, as in Section 1.1). The projections from
X1 ×X2 to X1 and X2 are respectively denoted byπ(0)

1 and π(0)
2 when the typesX1 and X2 are clear

from the context. Theproduct of two pure morphismsf (0)1 : X1 → Y1 and f (0)2 : X2 → Y2 is a pure
morphism(f1 × f2)(0) : X1 ×X2 → Y1 ×Y2 subject to the rules in Figure 7, which are the usual rules
for products up to strong equations. Moreover whenX1 or X2 is 1 it can be proved in the usual way
that the projectionsπ(0)

1 : X1 × 1 → X1 and π(0)
2 : 1× X2 → X2 are isomorphisms. The permutation

perm(0)
X1,X2

: X1×X2 → X2×X1 is defined as usual byπ1◦permX1,X2
≡ π2 andπ2◦permX1,X2

≡ π1.
The rules in Figure 7, which are symmetric inf1 and f2, cannot be applied to modifiers: in-

deed, the effect of building a pair of modifiers depends on theevaluation strategy. However, following

J.-G. Dumas, D. Duval, L. Fousse & J.-C. Reynaud 57

(0-prod)
f (0)1 : X1 →Y1 f (0)2 : X2 →Y2

(f1× f2)(0) : X1×X2 →Y1×Y2

(0-proj-1)
f (0)1 : X1 →Y1 f (0)2 : X2 →Y2

π1◦ (f1× f2)≡ f1◦π1
(0-proj-2)

f (0)1 : X1 →Y1 f (0)2 : X2 →Y2

π2◦ (f1× f2)≡ f2◦π2

(0-prod-unique)
g(0) : X1×X2 →Y1×Y2 π1◦g≡ f1◦π1 π2◦g≡ f2◦π2

g≡ f1× f2

Figure 7: Rules for products of pure morphisms

[Dumas et al. 2011], we define theleft semi-pure productof an identityidX and a modifierf : X2 →Y2,
as a modifieridX ⋉ f : X×X2 → X×Y2 subject to the rules in Figure 8, which form a decorated version
of the rules for products. Symmetrically, theright semi-pure productof a modifier f : X1 →Y1 and an
identity idX is a modifierf ⋊ idX : X1×X →Y1×X subject to the rules symmetric to those in Figure 8.

(left-prod)
f (2) : X2 →Y2

(idX ⋉ f)(2) : X×X2 → X×Y2

(left-proj-1)
f (2) : X2 →Y2

π1◦ (idX ⋉ f)∼ π1
(left-proj-2)

f (2) : X2 →Y2

π2◦ (idX ⋉ f)≡ f ◦π2

(left-prod-unique)
g(2) : X×X2 →Y×Y2 π1◦g∼ π1 π2◦g≡ f ◦π2

g≡ idX ⋉ f

Figure 8: Rules for left semi-pure products

Let us add the rules for semi-pure products to the decorated logic for states. In the decorated theory
of statesStatedeco, let us assume that there are productsVi ×Vj andVi × 1 and1×Vj for all locations
i and j. Then it is easy to check that the expansion of the decorated Equations (2)d below gets inter-
preted as Equations (2) in Remark 1.1. We use the simplified notations idi = idVi and 〈〉i = 〈〉Vi and
permi, j = permVi ,Vj

. Equation (2.1)d has been proved in Section 3.2 and Equation (2.6)d will be proved
in Section 3.4. The other equations can be proved in a similarway.

(2.1)d Annihilation lookup-update.∀ i ∈ Loc, ui ◦ l i ≡ id1 : 1 → 1

(2.2)d Interaction lookup-lookup.∀ i ∈ Loc, l i ◦ 〈〉i ◦ l i ≡ l i : 1 →Vi

(2.3)d Interaction update-update.∀ i ∈ Loc, ui ◦π2◦ (ui ⋊ idi)≡ ui ◦π2 : Vi ×Vi → 1

(2.4)d Interaction update-lookup.∀ i ∈ Loc, l i ◦ui ∼ idi : Vi →Vi

(2.5)d Commutation lookup-lookup.∀ i 6= j ∈ Loc, l j ◦ 〈〉i ◦ l i ≡ permj,i ◦ l i ◦ 〈〉 j ◦ l j : 1 →Vi ×Vj

(2.6)d Commutation update-update.∀ i 6= j ∈ Loc, u j ◦π2◦ (ui ⋊ id j)≡ ui ◦π1◦ (idi ⋉u j) : Vi ×Vj → 1

(2.7)d Commutation update-lookup.∀ i 6= j ∈ Loc, l j ◦ui ≡ π2◦ (idi ⋉ l j)◦ (ui ⋊ id j)◦π−1
1 : Vi →Vj

58 Decorated proofs for computational effects: States

3.4 Commutation update-update

Proposition 3.3. For each locations i6= j , the order of storing in the locations i and j does not matter.

u(2)j ◦π(0)
2 ◦ (ui ⋊ id j)

(2) ≡ u(2)i ◦π(0)
1 ◦ (idi ⋉u j)

(2) : Vi ×Vj → 1 .

Proof. In order to avoid ambiguity, in this proof the projections fromVi ×1 are denotedπ1,i andπ2,i and
the projections from1×Vj are denotedπ1, j andπ2, j , while the projections fromVi ×Vj are denotedπ1,i, j

andπ2,i, j . It follows from Section 3.3 thatπ1,i andπ2, j are isomorphisms, while the derived rule(E(0)
1)

implies thatπ2,i ≡ 〈〉i andπ1, j ≡ 〈〉 j . Using the unicity property of the observational product, we have
to prove thatlk ◦u j ◦π2, j ◦ (ui ⋊ id j)∼ lk ◦ui ◦π1,i ◦ (idi ⋉u j) for each locationk.

• Whenk 6= i, j, let us prove independently four weak equations(W1) to (W4):

(A2) lk ◦u j ∼ lk ◦ 〈〉 j
(∼-subs)

lk ◦u j ◦π2, j ◦ (ui ⋊ id j)∼ lk ◦ 〈〉 j ◦π2, j ◦ (ui ⋊ id j) (W1)

...
(E(0)

3)
〈〉 j ◦π2, j ≡ π1, j

ui(right-prod)
ui ⋊ id j

(≡-subs)
〈〉 j ◦π2, j ◦ (ui ⋊ id j)≡ π1, j ◦ (ui ⋊ id j)

ui(right-proj-1)
π1, j ◦ (ui ⋊ id j)≡ ui ◦π1,i, j

(≡-trans)
〈〉 j ◦π2, j ◦ (ui ⋊ id j)≡ ui ◦π1,i, j

(≡-repl)
lk ◦ 〈〉 j ◦π2, j ◦ (ui ⋊ id j)≡ lk ◦ui ◦π1,i, j

(≡-to-∼)
lk ◦ 〈〉 j ◦π2, j ◦ (ui ⋊ id j)∼ lk ◦ui ◦π1,i, j (W2)

(A2) lk ◦ui ∼ lk ◦ 〈〉i
(∼-subs)

lk ◦ui ◦π1,i, j ∼ lk ◦ 〈〉i ◦π1,i, j (W3)

...
(E(0)

3)
〈〉i ◦π1,i, j ≡ 〈〉Vi×Vj

(≡-subs)
lk ◦ 〈〉i ◦π1,i, j ≡ lk ◦ 〈〉Vi×Vj

(≡-to-∼)
lk ◦ 〈〉i ◦π1,i, j ∼ lk ◦ 〈〉Vi×Vj (W4)

Equations(W1) to (W4) together with the transitivity rule for∼ give rise to the weak equation
lk ◦ u j ◦ π2, j ◦ (ui ⋊ id j) ∼ lk ◦ 〈〉Vi×Vj . A symmetric proof shows thatlk ◦ ui ◦ π1,i ◦ (idi ⋉ u j) ∼
lk ◦〈〉Vi×Vj . With the symmetry and transitivity rules for∼, this concludes the proof whenk 6= i, j.

• Whenk= i, it is easy to prove thatl i ◦ui ◦π1,i ◦ (idi ⋉u j)∼ π1,i, j , as follows.

(A1) l i ◦ui ∼ idi
(∼-subs)

l i ◦ui ◦π1,i ◦ (idi ⋉u j)∼ π1,i ◦ (idi ⋉u j)

u j
(left-proj-1)

π1,i ◦ (idi ⋉u j)∼ π1,i, j
(∼-trans)

l i ◦ui ◦π1,i ◦ (idi ⋉u j)∼ π1,i, j

Now let us prove thatl i ◦u j ◦π2, j ◦ (ui ⋊ id j)∼ π1,i, j , as follows.

(A2) l i ◦u j ∼ l i ◦ 〈〉 j
(∼-subs)

l i ◦u j ◦π2, j ∼ l i ◦ 〈〉 j ◦π2, j

...
(E(0)

3)
〈〉 j ◦π2, j ≡ 〈〉1×Vj

(≡-repl)
l i ◦ 〈〉 j ◦π2, j ≡ l i ◦ 〈〉1×Vj

(≡-to-∼)
l i ◦ 〈〉 j ◦π2, j ∼ l i ◦ 〈〉1×Vj

(∼-trans)
l i ◦u j ◦π2, j ∼ l i ◦ 〈〉1×Vj

(∼-subs)
l i ◦u j ◦π2, j ◦ (ui ⋊ id j)∼ l i ◦ 〈〉1×Vj ◦ (ui ⋊ id j) (W′

1)

J.-G. Dumas, D. Duval, L. Fousse & J.-C. Reynaud 59

...
(E(0)

2)
〈〉1×Vj ≡ π1, j

(≡-subs)
〈〉1×Vj ◦ (ui ⋊ id j)≡ π1, j ◦ (ui ⋊ id j)

ui(right-proj-1)
π1, j ◦ (ui ⋊ id j)≡ ui ◦π1,i, j

(≡-trans)
〈〉1×Vj ◦ (ui ⋊ id j)≡ ui ◦π1,i, j

(≡-repl)
l i ◦ 〈〉1×Vj ◦ (ui ⋊ id j)≡ l i ◦ui ◦π1,i, j

(≡-to-∼)
l i ◦ 〈〉1×Vj ◦ (ui ⋊ id j)∼ l i ◦ui ◦π1,i, j (W′

2)

(A1) l i ◦ui ∼ idi
(∼-subs)

l i ◦ui ◦π1,i, j ∼ π1,i, j (W′
3)

Equations(W′
1) to (W′

3) and the transitivity rule for∼ give rise tol i ◦u j ◦π2, j ◦ (ui ⋊ id j) ∼ π1,i, j .
With the symmetry and transitivity rules for∼, this concludes the proof whenk= i.

• The proof whenk= j is symmetric to the proof whenk= i.

Conclusion

In this paper, decorated proofs are used for proving properties of states. To our knowkedge, such proofs
are new. They can be expanded in order to get the usual proofs,however decorated proofs are more
concise and closer to the syntax; in the expanded proof the notion of effect is lost. This approach can be
applied to other computational effects, like exceptions [Dumas et al. 2012a, Dumas et al. 2012b].

References

[Domı́nguez & Duval 2010] César Domı́nguez, Dominique Duval. Diagrammatic logic applied to a parame-
terization process Mathematical Structures in Computer Science 20, p. 639-654 (2010). doi:10.1017/

S0960129510000150.

[Dumas et al. 2011] Jean-Guillaume Dumas, Dominique Duval,Jean-Claude Reynaud. Cartesian effect categories
are Freyd-categories. Journal of Symbolic Computation 46,p. 272-293 (2011). doi:10.1016/j.jsc.2010.
09.008.

[Dumas et al. 2012a] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud. A du-
ality between exceptions and states. Mathematical Structures for Computer Science 22, p. 719-722 (2012).
doi:10.1017/S0960129511000752.

[Dumas et al. 2012b] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud. Adjunc-
tions for exceptions. Submitted for publication (2012). arXiv:1207.1255.

[Gaudel et al. 1996] Marie-Claude Gaudel, Pierre Dauchy, Carole Khoury. A Formal Specification of the Steam-
Boiler Control Problem by Algebraic Specifications with Implicit State. Formal Methods for Industrial Ap-
plications 1995. Springer-Verlag Lecture Notes in Computer Science 1165, p. 233-264 (1996). doi:10.1007/

BFb0027240.

[Melliès 2010] Paul-André Melliès. Segal condition meets computational effects. LICS 2010. IEEE Computer
Society, p. 150-159 (2010). doi:10.1109/LICS.2010.46.

[Moggi 1991] Eugenio Moggi. Notions of Computation and Monads. Information and Computation 93(1), p. 55-
92 (1991). doi:10.1016/0890-5401(91)90052-4.

[Plotkin & Power 2002] Gordon D. Plotkin, John Power. Notions of Computation Determine Monads. FoS-
SaCS 2002. Springer-Verlag Lecture Notes in Computer Science 2303, p. 342-356 (2002). doi:10.1007/

3-540-45931-6_24.

http://dx.doi.org/10.1017/S0960129510000150
http://dx.doi.org/10.1017/S0960129510000150
http://dx.doi.org/10.1016/j.jsc.2010.09.008
http://dx.doi.org/10.1016/j.jsc.2010.09.008
http://dx.doi.org/10.1017/S0960129511000752
1207.1255
http://dx.doi.org/10.1007/BFb0027240
http://dx.doi.org/10.1007/BFb0027240
http://dx.doi.org/10.1109/LICS.2010.46
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1007/3-540-45931-6_24
http://dx.doi.org/10.1007/3-540-45931-6_24

	1 Motivations
	1.1 Semantics of states
	1.2 Computational effects: an example
	1.3 Diagrammatic logics

	2 Three logics for states
	2.1 The explicit logic for states
	2.2 The apparent logic for states
	2.3 The decorated logic for states
	2.4 From decorated to apparent
	2.5 From decorated to explicit

	3 Decorated proofs
	3.1 Some derived rules
	3.2 Annihilation lookup-update
	3.3 Semi-pure products
	3.4 Commutation update-update

