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This paper describes a strategy for providing hints during an ACL2 proof, implemented in a utility

called use-termhint. An extra literal is added to the goal clause and simplified along with the rest

of the goal until it is stable under simplification, after which the simplified literal is examined and a

hint extracted from it. This simple technique supports some commonly desirable yet elusive features.

It supports providing different hints to different cases of a case split, as well as binding variables so

as to avoid repeating multiply referenced subterms. Since terms used in these hints are simplified in

the same way as the rest of the goal, this strategy is also more robust against changes in the rewriting

normal form than hints in which terms from the goal are written out explicitly.

1 Introduction

ACL2’s mechanism for giving hints to the prover is very powerful and general. Users can provide

arbitrary code to evaluate whether a hint should be given and what that hint should be. However, it

is surprisingly difficult to accomplish certain things with computed hints. We notice that a frequent

stumbling block is the difficulty of predicting the exact form of some term. A user may know the initial

form of the term but fail to predict its normal form under rewriting; it may even rewrite to different terms

in different cases.

Consider a proof where we want to supply different hints to different cases. Suppose the proof splits

into two cases, one assuming A and one assuming (not A), where A is some term. Say we want to

supply a hint H1 for the case where A is assumed true and H2 for the other case. Users often provide

subgoal hints in such cases, even though these can be broken either by changes to the relevant functions

or by changes to ACL2 system heuristics. Alternatively, a computed hint can examine the clause to see

when the case split occurs and which case has resulted—if (not A) is a member of the clause, then A

has been assumed true, and if A is a member of the clause, it is assumed false:

:hints ((and (member-equal '(not A) clause) H1)

(and (member-equal 'A clause) H2))

However, a small change in rewriting strategy could cause the exact form of the term A in the clause to

change, in which case neither hint will fire.

A second kind of problem occurs very frequently when doing inductive proofs and giving a hint to

expand a conclusion term. The hint may work in many cases, but frequently there is at least one case

where some variable is substituted for a known value, causing the hint to fail. Consider the following

example:

(defund add-to-lst (x n)

(if (atom x)

x

(cons (+ n (car x))
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(add-to-lst (cdr x) n))))

(defthm len-of-add-to-lst

(implies (true-listp x)

(equal (len (add-to-lst x n))

(len x)))

:hints (("goal" :induct t

:expand ((add-to-lst x n)))))

This proof fails because in the base case where x is an atom, it is known to be NIL due to the true-listp

assumption. This substitution occurs before (add-to-lst x n) is expanded, and then the expand hint

doesn’t match.

We describe a computed hint utility that addresses this problem by letting ACL2 simplify the terms

that will be put into the hint as it is simplifying the goal itself. This mechanism allows the user to give

different hints when considering different cases, and the manner of giving these hints is idiomatic—

simply write a term that produces different hints under different if branches. It allows terms to be bound

to variables and used multiple times, and since the terms that will appear in the hints are translated and

simplified by ACL2 before the hint is produced, the user does not need to provide them as translated

terms or in simplified normal form in order to match other occurrences of these terms in the goal.

In Section 3 we describe what the utility does and give an example of how it is used. In Section

4 we explain the rationale behind certain design decisions, and in Section 5 we describe an extension

to the utility that supports sequencing hints in multiple phases of a proof. In Section 6 we describe a

proof effort in which this mechanism was used a great deal and give an extended example explaining one

theorem proved using the utility.

2 Related Work

All major interactive theorem provers allow proofs to be structured at a high level by proving lemmas

that may then be used in later proofs. They differ more in their approaches to proving individual lemmas.

ACL2 has a robust default proof strategy that the user can modify by giving hints [1]. HOL and Coq

proofs can be constructed directly at a very low level or may be directed by giving commands called

tactics and combining them using tactic combinators called tacticals [3][2]. Isabelle also has tactics, but

users more commonly direct proofs by structuring them using the Isar language, which supports outlining

a proof using a syntax that is reminiscent of mathematical prose, but also contains directions on how to

prove each subgoal [5].

The ACL2 Community Books [1] contains many libraries that provide special-purpose computed

hints for reasoning in certain domains. However, there are few contributions that aid users in constructing

their own hints. An exception is the community book misc/computed-hint.lisp written by Jun

Sawada [4], which provides a set of practical utilities intended to improve computed hints. These support,

for example, pattern matching against terms occurring in the clause while allowing substitution into the

hint to be generated. We view these utilities as complementary to the mechanism described here.

3 Basic Usage

Our hint utility, use-termhint, is implemented in the ACL2 community book std/util/termhints.

The utility is a computed hint form that takes a hint term provided by the user. Here is the definition of
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use-termhint:

(defmacro use-termhint (hint-term)

`'(:computed-hint-replacement

((and stable-under-simplificationp

(use-termhint-find-hint clause)))

:use ((:instance use-termhint-hyp-is-true

(x ,hint-term)))))

Initially, this just gives a :use hint and sets up another hint to fire when the goal is stable under

simplification. The :use hint instantiates the theorem use-termhint-hyp-is-true, whose body is

(use-termhint-hyp x), where use-termhint-hyp is an always-true function for which no rules are

enabled. The result of the :use hint is that a hypothesis (use-termhint-hyp user-hint-term) is

added to the goal clause. Since no more hints are given until the goal is stable under simplification, this

literal, including the hint term, is simplified along with the rest of the clause.

The computed-hint-replacement form produced by the above hint causes a second computed hint,

(use-termhint-find-hint clause), to fire when the clause is stable under simplification. This

computed hint looks in the clause for a hypothesis that is a call of use-termhint-hyp and extracts

a hint from its argument; it removes the use-termhint-hyp hypothesis using a custom-built clause

processor and then issues the extracted hint. We describe how the hint is extracted in more detail below.

First, here is an example of such a computed hint:

:hints ((use-termhint

(let* ((f (foo a b))

(g (bar f c))

(h (baz f d))

(i (fa g h)))

(if (consp g)

`'(:use ((:instance my-lemma

(x ,(hq g)) (y ,(hq h)) (z ,(hq i)))))

`'(:expand ((fa ,(hq g) ,(hq h))))))))

When this hint initially fires, it places the let* term into the goal as the argument of a new hypothesis

(use-termhint-hyp ...). ACL2 then beta-reduces and simplifies this term along with the rest of the

clause. The presence of this additional literal will cause a case split due to its if test. When the goal

is stable under simplification, this term will have simplified into something derived from the `'(:use

...) subterm in one case and the `'(:expand ...) subterm in the other case. For the latter, the

resulting term looks like this, if we assume that none of the baz, bar, or foo subterms were successfully

rewritten:

(CONS

(QUOTE QUOTE)

(CONS (CONS (QUOTE :EXPAND)

...

(HQ (BAR (FOO A B) C))

...

(HQ (BAZ (FOO A B) D))

...)

(QUOTE NIL)))
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To extract the intended hint from this term, we use process-termhint, a simple term interpreter

that understands quote, cons, and binary-append (since this can be produced when using ,@ inside

backticks). It also treats the function hq the same as quote, which we explain in Section 4 below. This

reduces the above term to the following hint:

'(:EXPAND ((FA (BAR (FOO A B) C)

(BAZ (FOO A B) D))))

As a special case, if the hint term reduces to NIL, then no hint is given.

4 Design Decisions

Readers may note some oddities in the example above:

• Why ,(hq g), etc., rather than ,g?

• Why use backquote-quote in `'(:use ...) rather than just backquote, i.e., `(:use ...)?

4.1 HQ

The use of hq distinguishes subterms that should not be interpreted by process-termhint but sim-

ply passed through as if quoted. We can’t use quote directly because of its special meaning as a

syntax marker rather than a function: ,(quote g) would produce the symbol g instead of substitut-

ing the let binding of g. Using hq works because it is not treated specially by anything other than

process-termhint. (In the logic, it is simply a unary stub function.)

We could define process-termhint differently to avoid needing to use hq in most cases: it could

treat any term with leading function symbols other than cons and binary-append as quotations, in

which case we could simply use ,g instead of ,(hq g) – but this wouldn’t work if g was bound to a

term that was (or simplified to) a call of cons or binary-append. Since we don’t wish to require users

to be cognizant of this difference between cons and binary-append and other function symbols, we

decided instead to require that hq be used to quote terms that process-termhint should not interpret.

4.2 Backquote-Quote

To allow the most general usage of this tool, the hints passed to ACL2 from use-termhint are actually

computed hints rather than literal keyword-value lists. We can think of process-termhint as evaluat-

ing the hint term (though it only allows cons and binary-append as function symbols); however, its

result is then passed to ACL2’s computed hint interpreter, which evaluates it again. That is why the ex-

amples above show hint keyword/value lists preceded by backquote-quote. If the quote occurring imme-

diately after the backquote in the `'(:expand ...) was omitted, the result from process-termhint

would be (:expand ...) instead of '(:expand ...); the former would cause an error when evalu-

ated again by ACL2’s computed hint mechanism, since it is not a valid term, whereas the evaluation of

the latter yields the expected keyword/value list. We actually support this slight abuse as a special case,

adding a quote to any hint that would otherwise begin with a keyword symbol. But in the more general

case, this double evaluation scheme allows hint terms to produce computed hints, as in the following

example:
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:hints ((use-termhint

(let* ((q (foo a b)))

`(my-computed-hint-function

',(hq q) clause id stable-under-simplificationp))))

For the common case where the hint term directly produces a keyword/value list, we support both the

`'(:key0 val0 ...) form, which is doubly evaluated, and the simpler `(:key0 val0 ...) form,

whose result after evaluation by process-termhint is quoted so as to nullify the second evaluation.

5 Sequencing Hints

It is sometimes useful to provide several stages of hints. We support this in the use-termhint utility

via a macro (termhint-seq hint-term1 hint-term2). This can be used inside a term passed to

use-termhint. When simplifying the initial hint term in which it occurs, hint-term1 will get sim-

plified while hint-term2 is wrapped in a call of hide, which prevents it from being simplified. Once

the initial simplification is complete, the hint resulting from hint-term1 is applied, and additionally,

hint-term2 is provided as the term to a new invocation of use-termhint with the hide removed.

A simple example:

:hints ((use-termhint

(let ((a (bar f c)))

(termhint-seq

''(:in-theory (enable my-theory1))

(if (foo a b)

''(:in-theory (enable my-theory2))

''(:in-theory (enable my-theory3)))))))

The if test in the second argument to termhint-seq does not cause a case split until after the first

hint (enabling my-theory1) takes effect, because it is inside a hide. The let binding of a does apply

to the occurrence of a in this term.

There is an unfortunate interaction between ACL2’s function definition normalization feature and

termhint-seq which that can occur when termhint-seq is used in a function. (A user might create a

function rather than putting the whole term in the hint due to an aesthetic preference to have a theorem

appear in its book without too large a hint list attached.) Normalization causes if tests to be pulled out

of function calls, even for hide: (hide (if a b c)) becomes (if a (hide b) (hide c)). In the

above example, if the hint was defined in a function rather than given explicitly, the case split would

occur before the first hint was given instead of after. This can be avoided by giving the declaration

(xargs :normalize nil) when defining a function that uses termhint-seq.

6 Application

We used this utility frequently in a proof of the correctness of Tarjan’s strongly connected components

algorithm, accessible in the ACL2 community book centaur/misc/tarjan.lisp. Much of this proof

involves technical lemmas about the existence of paths through the graph. For example, one usage of

use-termhint is in the following theorem:

(defthm reachable-through-unvisited-by-member-cond-2

(implies (and (tarjan-preorder-member-cond x preorder new-preorder)
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(graph-reachable-through-unvisited-p z y preorder)

(not (graph-reachable-through-unvisited-p x y preorder)))

(graph-reachable-through-unvisited-p z y new-preorder))

:hints ((use-termhint (reachable-through-unvisited-by-member-cond-2-hint

x y z preorder new-preorder))))

We’ll informally define enough here to say what the theorem means and how it is proved. First,

(graph-reachable-through-unvisited-p x y preorder) says that there exists a path from graph

node x to graph node y that does not include any member of preorder. Then, (tarjan-preorder-

member-cond x preorder new-preorder) describes the final visited node set of a depth-first-search

(DFS) when the DFS is run on a node x with initial visited node set preorder:

(defun-sk tarjan-preorder-member-cond (x preorder new-preorder)

(forall y

(iff (member y new-preorder)

(or (member y preorder)

(graph-reachable-through-unvisited-p x y preorder)))))

I.e., a node y will have been visited by the time the DFS returns if either it was already visited before

the DFS started, or it can be reached from x without traversing any already-visited nodes.

The theorem above shows that the visited nodes after a DFS starting from x don’t break any paths to

nodes that weren’t reachable from x. That is, given a node y that is not reachable from x but is reachable

from some node z, then it is still reachable from z when omitting the nodes that are newly visited after a

DFS starting from x.

To prove this, we use the path from z to y. If that path is still valid after the DFS (i.e. it doesn’t

intersect new-preorder) then we’re done. Otherwise, we’ll use that path to construct a path from x to

y. Since we assume the path does intersect new-preorder, let i be a witness to that intersection, i.e.

a node in that path that is also in new-preorder. The suffix of the path starting at i is a path from i

to y that does not intersect preorder. Additionally, since i is not in preorder, tarjan-preorder-

member-cond implies i is reachable from x without intersecting preorder. Composing the path from

x to i with the path from i to y yields a path from x to y not intersecting preorder, so we have

contradicted our assumption that y is not reachable from x.

Here is the function producing the hint term used to prove the theorem via the chain of reasoning

described above:

(defun reachable-through-unvisited-by-member-cond-2-hint

(x y z preorder new-preorder)

;; Hyp assumes z reaches y in preorder. Get the path from z to y:

(b* ((z-y (graph-reachable-through-unvisited-canonical-witness z y preorder))

;; If that doesn’t intersect the new preorder, then z reaches y

;; via that same path in the new preorder.

((unless (intersectp z-y new-preorder))

`'(:use ((:instance graph-reachable-through-unvisited-p-suff

(x z) (visited new-preorder)

(path ,(hq z-y))))

:in-theory (disable graph-reachable-through-unvisited-p-suff)))

;; Otherwise, get a node that is in both the path and the new-preorder

(i (intersectp-witness z-y new-preorder))
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((when (member i preorder))

;; this can’t be true because it’s a member of z-y

`'(:use ((:instance intersectp-member

(a ,(hq i))

(x ,(hq z-y))

(y ,(hq preorder))))

:in-theory (disable intersectp-member)))

;; Since i is a member of new-preorder it’s reachable from x

((unless (graph-reachable-through-unvisited-p x i preorder))

`'(:use ((:instance tarjan-preorder-member-cond-necc

(y ,(hq i))))

:in-theory (disable tarjan-preorder-member-cond-necc)))

;; Construct the path from x to y using the paths from x to i and i to y

(x-i (graph-reachable-through-unvisited-canonical-witness x i preorder))

(x-y (append x-i (cdr (member i z-y)))))

`'(:use ((:instance graph-reachable-through-unvisited-p-suff

(path ,(hq x-y)) (visited preorder)))

:in-theory (disable graph-reachable-through-unvisited-p-suff))))

The termhint utility is well suited to this sort of proof because there are many steps that would be

difficult to automate: a rule that would find a correct witnessing path from x to y in the example above

would need to be either very specific or very smart. Instead, we guide the proof at a high level by defining

the case split and providing specific hints that resolve each of the cases separately.

A more common approach to this kind of proof development is to perform each step as its own

lemma. These lemmas likely aren’t suitable as general rules but can be instantiated to make process in the

current proof. The theorem discussed above can be proved using four lemmas corresponding to the cases

in the hint function. This is a reasonable approach, and having each case stand alone as a lemma might

make it more clear how to debug any problems (though see below for a strategy to aid debugging proofs

that use use-termhint). However, stating the lemmas requires repeating the applicable hypotheses and

witness terms for each lemma individually, and this clutter makes it harder for a human to understand the

chain of reasoning.

The main problem in debugging proofs that use use-termhint is determining which case generated

a failed checkpoint. To remedy this, the book defining use-termhint provides an always-true func-

tion mark-clause and a corresponding theorem mark-clause-is-true. Used as follows, it adds a

hypothesis (mark-clause 'my-special-case):

:use ((:instance mark-clause-is-true (x 'my-special-case)))

Adding such an instantiation to the hints produced by suspect cases effectively labels each resulting

subgoal with a name that clarifies where it came from.

7 Conclusion

The use-termhint utility in some ways goes against the prevailing philosophy on how to prove theo-

rems using ACL2. That is, when possible, it is better to avoid using hints to micromanage the prover, and

instead to create rewriting theories that solve problems more automatically and robustly. But sometimes

it is necessary to do a proof using a complicated sequence of reasoning steps that don’t seem to be, in
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any obvious way, applications of nice rules. In such cases, use-termhint provides a robust, convenient,

idiomatic method of structuring a proof at a high level and providing the needed hints.
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