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We present a methodology for formal verification of arithmetic RTL designs that combines sequential
logic equivalence checking with interactive theorem proving. An intermediate model of a Verilog
module is hand-coded in Restricted Algorithmic C (RAC), a primitive subset of C augmented by the
integer and fixed-point register class templates of Algorithmic C. The model is designed to be as
abstract and compact as possible, but sufficiently faithful to the RTL to allow efficient equivalence
checking with a commercial tool. It is then automatically translated to the logic of ACL2, enabling
a mechanically checked proof of correctness with respect to a formal architectural specification. In
this paper, we describe the RAC language, the translation process, and some techniques that facilitate
formal analysis of the resulting ACL2 code.

1 Introduction

A prerequisite for applying interactive theorem proving to arithmetic circuit verification is a reliable
means of converting an RTL design to a semantically equivalent representation in a formal logic. Within
the ACL2 community, this has been achieved in at least two industrial settings by mechanical translation
from Verilog directly to the ACL2 logic. At Advanced Micro Devices, our approach was to generate
a large clique of mutually recursive executable ACL2 functions in correspondence with the signals of
a Verilog module [9], a scheme commonly known as “shallow embedding”. The Centaur Technology
verification team has followed a different path [3], converting an RTL design to a netlist of S-expressions
to be executed by an interpreter coded in ACL2, i.e., a “deep embedding” of the design. Each approach
has its advantages [1]—in this case, the result of the first is more suitable for traditional theorem proving
while the second better enables verification by “bit-blasting”, but both burden the user with an unwieldy
body of ACL2 code, at least comparable in size to the Verilog source.

Theorem proving in general is uncommon in the chip design industry. A more popular formal verifi-
cation technique is sequential logic equivalence checking, by which a design is checked against a trusted
model, either a high-level C++ program or a legacy Verilog design, with the use of a commercial tool
such as SLEC [6] or Hector [10]. This method has the advantage of being largely automatic and requiring
less expertise of the user, but it suffers from two main deficiencies. First, the so-called “golden model” is
usually trusted solely on the basis of testing, not having been formally verified itself. The second is the
complexity limitations of these tools, which are likely to render them ineffective unless either the RTL is
relatively simple or its design closely matches that of the model.

Here we describe a hybrid solution, initially developed at Intel [7] and now in regular use at Arm [8],
that combines equivalence checking with theorem proving in a two-step process. First, an intermediate
model is derived from the RTL by hand, coded in Restricted Algorithmic C (RAC), a primitive subset
of C augmented by the register class templates of Algorithmic C [5], which essentially provide the bit
manipulation features of Verilog. The objective is a high-level model that is more manageable than the
RTL but mirrors its microarchitecture to the extent required to allow efficient equivalence checking with
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SLEC [6]. This program is then processed by a RAC-ACL2 translator, which itself involves two steps:
a special-purpose Flex/Bison parser [4] generates a set of S-expressions, which are converted to ACL2
functions by a code generator written in ACL2. Finally, the prover is used to check a proof of correctness
of the design with respect to a formal architectural specification. Such proofs are supported by an ACL2
library of lemmas pertaining to RTL and computer arithmetic, found in the directory books/rtl of the
ACL2 repository. This directory also contains specifications of the elementary arithmetic instructions of
the x86 and Arm architectures. The library and the underlying arithmetic theory are documented in [8].
The RAC translator resides in books/projects/rac.

The primary advantage of this approach over direct translation is that it provides an abstract and
readable representation of the design that is amenable to mathematical analysis, and consequently a
compact ACL2 model that is more susceptible to formal proof. The translation of Arm floating-point
units has been found to result in a reduction in code size by approximately 85%. The intermediate model
serves other purposes as well, including documentation, design guidance (in some cases the RAC model
has been written before the RTL), and simulation in a C++ environment. One disadvantage is the number
of software systems involved, each of which may be viewed as a possible source of error. Another is the
significant effort required in extracting the model from the design. On the other hand, much of this effort
would still be needed for the proof effort.

This methodology has been successfully applied in the verification of a wide range of arithmetic
components of Intel and Arm CPUs and GPUs, including high-precision multipliers, adders, and fused
multiply-add modules; 64-bit integer multipliers and dividers; a variety of SRT division and square root
modules of radices 2, 4, and 8; and a radix-1024 divider with selection by rounding. Examples of
these applications, including RAC models, their ACL2 translations, and proof scripts, may be found in
books/projects/arm. RAC is also the basis of the hardware/software co-assurance work of Hardin. [2]

In Section 2, we present the basic features of the RAC language. The parser and code generator are
described in Sections 3 and 4. Some established techniques for proving theorems about RAC programs
are discussed in Section 5.

2 Restricted Algorithmic C

The RAC language consists of a small set of constructs that have been found to be suitable for modeling
RTL designs, especially floating-point units:

• Basic numerical data types: bool, uint, int, and enums (but no pointers);

• Composite types: arrays and structs;

• Simple statements: variable and constant declarations, assignments, type declarations, and asser-
tions;

• Control statements (with restrictions): if, for, switch, and return;

• Functions (with value parameters only);

• Standard C++ library templates: array and tuple;

• Algorithmic C class templates: arbitrary width signed and unsigned integer and fixed-point regis-
ters, bit manipulation primitives, and logical operations.

An object of a register type is a bit vector of a width specified by a template parameter. The interpretation
of the vector upon evaluation depends on its type. An unsigned integer register of width n is evaluated
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ui32 add8(ui32 a, ui32 b) {

ui32 result; ui8 sum;

for (uint i=0; i<4; i++) {

si8 aSgnd = a.slc<8>(8 * i);

si8 bSgnd = b.slc<8>(8 * i);

si9 sumSgnd = aSgnd + bSgnd;

if (sumSgnd < -128)

sum = -128;

else if (sum >= 128)

sum = 127;

else

sum = sumSgnd;

result.set_slc(8 * i, sum);}

return result;}

Figure 1: A signed integer adder

simply as an integer in the range [0,2n). For a signed integer of the same width, bit n−1 is interpreted as a
sign bit and the value is in the range [−2n−1,2n−1). Fixed-point registers are similarly interpreted, except
that an additional template parameter indicates the location of an implicit binary point. For example, an
unsigned fixed-point register of width n with m integer bits holds an n-bit vector x with interpreted value
2m−nx.

The use of integer registers is illustrated in the first example of Figure 1. By convention, we denote
an unsigned (resp., signed) integer register class of width n as uin (resp., sin). In this case, the definition
of add8 has been preceded by the type declarations

typedef ac_int<32, false> ui32;

typedef ac_int<8, true> si8;

typedef ac_int<9, true> si9;

(This allows us subsequently to avoid some of the cumbersome syntax of C++.) Thus, the function
takes 2 32-bit arguments, from which it extracts corresponding 8-bit slices, adds them as signed integers,
“saturates” the sums to lie in the range [−128,128), and stores them in a 32-bit result vector. The bit
slice extraction method slc has a template parameter indicating the width of the slice and an argument
representing the base index. The set_slc method, which writes a value to a slice, takes two arguments,
which determine the base index of the slice and the value to be written, the type of which determines the
width of the slice. In the application of these methods, no disctinction between signed and unsigned or
integer and fixed-point types is recognized. The same is true of logical operations on registers. But when
a register is evaluated, the type is relevant. Thus, in the declaration

si9 sumSgnd = aSgnd + bSgnd;

the signed values of aSgnd and bSgnd are added using unbounded arithmetic (matching the semantics
of ACL2) and the result is written to the signed register sumSgnd, truncating if necessary (although here
the width 9 is chosen to avoid any loss of data). Similarly, in the next line, it is the signed value of that
register that is compared to -128.

The absence of pointers and reference parameters from our language implies that a function simply
returns a value without side-effects and that the C parameter-passing mechanism for arrays is disallowed.
The purpose of including the two standard library templates is to compensate for these restrictions: the
array template allows arrays to be passed by value and tuple provides the effect of multiple-valued
functions (and in fact its use is restricted to this context).
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A variety of control restrictions are imposed to facilitate translation to ACL2. Note that do, while,
continue, and break (except in a limited way within a switch statement) are excluded. A for loop,
in order to ensure admissibility of the generated recursive function (see Section 4), is required to have
the form

for ( init; test; update) { ... }

where

• init is either a declaration of, or an assignment to, the loop variable var, which must be of type
uint or int.

• test is either a comparison between the loop variable and a numerical expression of the form var
op limit, where op is <, <=, >, or >=, or a conjunction of the form test1 && test2, where test1 is such
a comparison and test2 is any boolean-valued term.

• update is an assignment to the loop variable.

The combination of test and update must guarantee termination of the loop. The translator derives a
:measure declaration from test, which is used to establish the admissibility of the resulting function. In
some cases, the test may be used to achieve the functionality of break. For example, instead of

for (uint i=0; i<N; i++) {if ( expr) break; ... }

we may write

for (uint i=0; i<N && ! expr; i++) { ... }
This feature may also be used in cases where the equivalence checker is unable to establish an absolute
upper bound on the number of iterations executed by the loop, which is required for the “unrolling” that
is performed by the tool. Thus, while ACL2 has no trouble establishing termination of either of the above
loops, SLEC may require something like the following, which may be used when N is known never to
exceed 128:

for (uint i=0; i<N && i<128; i++) { ... }
Further restrictions are imposed on the placement of return statements. We require every function body
to be a statement block that recursively satisfies the following conditions:

(1) The statement block consists of a non-empty sequence of statements;

(2) None of these statements except the final one contains a return statement;

(3) The final statement of the block is either a return statement or an if. . .else statement of which
each branch is either a return statement, an if. . .else statement that satisfies this condition, or
a statement block that satisfies all three of these conditions.

The design of a program in this language is generally a compromise between two opposing objec-
tives. On the one hand, a higher-level model is more susceptible to mathematical analysis and allows a
simpler correctness proof. On the other hand, successful equivalence checking of a complex design gen-
erally requires a significant amount of proof decomposition, using techniques that depend on structural
similarities between the model and the design.

As a rule of thumb, the model should be as abstract as possible while performing the same essential
computations as the design. For example, in the case of a Booth multiplier, it is advisable to replicate the
partial products and each level of the compression tree in order to allow the necessary decomposition.
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ui6 CLZ64(ui64 x) {

assert(x != 0);

bool z[64];

ui6 c[64];

for (uint i=0; i<64; i++) {

z[i] = !x[i];

c[i] = 0;}

uint n = 64;

for (uint k=0; k<6; k++) {

n = n/2; // n = 2^(5-k)

for (uint i=0; i<n; i++) {

c[i] = z[2*i+1] ? c[2*i] : c[2*i+1];

c[i][k] = z[2*i+1];

z[i] = z[2*i+1] && z[2*i];}}

return c[0];}

Figure 2: A leading zero counter

For a high-precision SRT divider, we find that successful equivalence checking requires a bitwise match
between the partial remainders and quotients on each iteration.

Abstraction and simplicity are achieved by eliminating implementation details and ignoring timing
and cycle structure, all of which may be done without adversely affecting the equivalence check. Settling
on the proper level of abstraction often requires some experimentation. Consider the leading zero counter
of Figure 2, which executes in logarithmic time with respect to the argument width. After k iterations of
the loop, where 0≤ k≤ 6, the value of the variable n is 26−k and the argument is conceptually partitioned
into n slices of width 2k. Each of the low order n entries of the boolean array z is set if and only if the
corresponding slice is 0, and when this is not the case, the corresponding entry of the array c holds
the number of leading zeroes of the slice. This function, which was designed to match the behavior of
a component of a floating-point adder, consists of considerably less code than the Verilog version but
allows a fast equivalence check. It is natural to ask whether the check would succeed if the function were
to be based on a more transparent linear-time algorithm:

ui6 CLZ64(ui64 x) {

int i;

for (i=63; i>=0 && !x[i]; i--) {}

return i;}

It does indeed, but the overall SLEC run-time for the adder that includes the function increases from 2
minutes to 22 minutes.

3 The RAC Parser

A by-product of the RAC parser is a more readable pseudocode version of a function, with C++ tem-
plates, methods, etc., replaced with a syntax that is more familiar to Verilog programmers. For example,
the slc and set_slc calls in add8 are replaced by

si8 aSgnd = a[8*i+7:8*i];

si8 bSgnd = b[8*i+7:8*i];
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(FUNCDEF ADD8 (A B)

(BLOCK (DECLARE RESULT 0)

(DECLARE SUM 0)

(FOR ((DECLARE I 0) (LOG< I 4) (+ I 1))

(BLOCK (DECLARE ASGND (BITS A (+ (* 8 I) 7) (* 8 I)))

(DECLARE BSGND (BITS B (+ (* 8 I) 7) (* 8 I)))

(DECLARE SUMSGND (BITS (+ (SI ASGND 8) (SI BSGND 8)) 8 0))

(IF (LOG< (SI SUMSGND 9) -128)

(ASSIGN SUM (BITS -128 7 0))

(IF (LOG>= SUM 128)

(ASSIGN SUM (BITS 127 7 0))

(ASSIGN SUM (BITS (SI SUMSGND 9) 7 0))))

(ASSIGN RESULT (SETBITS RESULT 32 (+ (* 8 I) 7) (* 8 I) SUM))))

(RETURN RESULT)))

Figure 3: RAC parser output

and
result[8*i+7:8*i] = sum;

Its primary purpose, however, is the conversion of a function definition to an S-expression that preserves
its structure. The parser output for the function add8 is displayed in Figure 3. Note that some RAC
primitives correspond to built-in ACL2 functions, while others correspond to functions defined in the
RTL book lib/rac: BITS and SETBITS extract and assign slices of a bit vector; LOG<, LOG>=, etc., are
comparators that return 1 or 0 (emulating C); SI computes the signed integer value of a register of a
given width. Other symbols that appear in the output—FUNCDEF, BLOCK, FOR, etc.—are not defined as
ACL2 functions but are processed later by the code generator.

Note also that variable types do not explicitly appear in the output. The problem of translating a
typed language to an untyped language is addressed by the parser, mainly by converting implicit register
evaluations and type conversions to explicit computations. Thus, in the expression that is derived from
the declaration

si9 sumSgnd = aSgnd + bSgnd;

the registers ASGND and BSGND are evaluated according to their type (computing their signed integer val-
ues), and when their sum is assigned to the 9-bit register SUMSGND, the low order 9 bits are extracted.
Evaluation and assignment of fixed-point registers are more complicated, involving division and multi-
plication by appropriate powers of 2.

4 The ACL2 Code Generator

The primary objective considered in the design of the code generator was simplicity, of both the program
and its output. Since the translation is yet another component of the verification process that must be
trusted, along with SLEC and ACL2, it should be as transparent as possible. A secondary consideration
is executability: efficiency is not an overriding concern, but simulation is important for the purpose of
testing. A third objective is susceptibility of the output to formal analysis, but this was found to be in
conflict with the first two and therefore ignored in the design. Instead, as discussed in Section 5, it is
addressed by converting the object code to a more manageable and provably equivalent form.

Obviously, there are various idiomatic differences between C and ACL2 to be managed in the trans-
lation. Large constant arrays, which occur in RTL designs to represent blocks of read-only memory, are
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tuple<ui53, ui53, si13> normalize(ui11 expa, ui11 expb, ui52 mana, ui52 manb) {

ui53 siga = mana, sigb = manb;

const uint bias = 0x3FF;

si13 expaShft, expbShft;

if (expa == 0) {

ui6 clz = CLZ64(siga);

siga <<= clz;

expaShft = 1 - clz;}

else {

siga[52] = 1;

expaShft = expa;}

if (expb == 0) {

ui6 clz = CLZ64(sigb);

sigb <<= clz;

expbShft = 1 - clz;}

else {

sigb[52] = 1;

expbShft = expb;}

si13 expQ = expaShft - expbShft + bias;

return tuple<ui53, ui53, si13>(siga, sigb, expQ);}

(DEFUND NORMALIZE (EXPA EXPB MANA MANB)

(LET ((SIGA MANA) (SIGB MANB) (BIAS 1023))

(MV-LET (SIGA EXPASHFT)

(IF1 (LOG= EXPA 0)

(LET ((CLZ (CLZ64 SIGA)))

(MV (BITS (ASH SIGA CLZ) 52 0)

(BITS (- 1 CLZ) 12 0)))

(MV (SETBITN SIGA 53 52 1) EXPA))

(MV-LET (SIGB EXPBSHFT)

(IF1 (LOG= EXPB 0)

(LET ((CLZ (CLZ64 SIGB)))

(MV (BITS (ASH SIGB CLZ) 52 0)

(BITS (- 1 CLZ) 12 0)))

(MV (SETBITN SIGB 53 52 1) EXPB))

(MV SIGA SIGB

(BITS (+ (- (SI EXPASHFT 13) (SI EXPBSHFT 13)) BIAS) 12 0))))))

Figure 4: Normalization of the operands of a floating-point divider



8 Translating Verilog to C++ to ACL2

converted to lists of values; variable arrays and structs are represented as alists. Among the operators
defined in lib/rac are the array access and assignment functions AG and AS.

The difference between the boolean values native to C and ACL2 (1 and 0 vs. T and NIL) requires
attention. Along with the comparators LOG<, etc., that were mentioned in Section 3, lib/rac includes a
macro IF1, which is similar to IF but tests its first argument against 0.

The primary difficulty faced in code generation, however, is the translation from an imperative to
a functional paradigm. Our overall strategy is based on the conversion of sequences of assignments
to nested bindings, using LET, LET*, and MV-LET. Each statement in the function body except the last
corresponds to one or more variables that are bound in this nest. For each of these statements, the
translator generates a triple consisting of the following:

(1) a list of the variables whose previous values are read by the statement;

(2) a list of the variables that are written by the statement;

(3) a term that evaluates to a multiple value consisting of the updated values of the variables of (2), or
a single value if (2) is a singleton.

The bindings of the nest are derived from these triples. Each statement generates either a LET or an
MV-LET depending on whether (2) is a singleton. Whenever possible, a nested sequence of LETs is
combined into a single LET or LET*. The body of the nest is generated from the final statement of the
function body.

Statements that require MV-LET include multiple-valued function calls and some conditional branch-
ing statements. In the latter case, the translation may be especially complicated, as in Figure 4, which
displays the translation of a function that normalizes the operands of a floating-point divider and com-
putes the biased exponent of the quotient.

Naturally, iteration is translated to recursion, with an auxiliary recursive function generated for every
for loop. The arguments of this function consist of (a) the loop variable, (b) any previously assigned
variables that are accessed inside the loop, including those that occur in the loop initialization or test,
and (c) the variables that are assigned within the loop and are not local to the loop. A multiple value is
returned comprising the updated values of the variables of (c). For example, for the recursive function
ADD8-LOOP-0 displayed in Figure 5, we have (a) I, (b) A and B, and (c) SUM and RESULT. Note that
only one of the two values returned by the non-recursive call to this function is subsequently used. For
this reason, along with various other possibilities for optimization that are ignored in the interest of
simplifying the process, every translated RAC file begins with these two lines to pacify ACL2:

(SET-IGNORE-OK T)

(SET-IRRELEVANT-FORMALS-OK T)

The construction of this recursive function is similar to that of the top-level function, but the final
statement of the body is not treated specially. Instead, the body of the nest of bindings is a recursive call
in which the loop variable is replaced by its updated value. The resulting term becomes the left branch
of an IF expression, of which the right branch is simply the returned variable (if there is only one) or a
multiple value consisting of the returned variables (if there are more than one). The test of the IF is

(AND (INTEGERP var) (INTEGERP limit) term)

where the test of the loop is var op limit and term is the result of converting the test to an expression that
evaluates to T or NIL. (The second conjunct of this term is omitted when limit is a constant.)

As shown in Figure 6, the translation of the leading zero counter includes three auxiliary functions,
corresponding to the loop that initializes variables and the subsequent nested pair. Note that this program
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(DEFUN ADD8-LOOP-0 (I A B SUM RESULT)

(DECLARE (XARGS :MEASURE (NFIX (- 4 I))))

(IF (AND (INTEGERP I) (< I 4))

(LET* ((ASGND (BITS A (+ (* 8 I) 7) (* 8 I)))

(BSGND (BITS B (+ (* 8 I) 7) (* 8 I)))

(SUMSGND (BITS (+ (SI ASGND 8) (SI BSGND 8)) 8 0))

(SUM (IF1 (LOG< (SI SUMSGND 9) -128)

(BITS -128 7 0)

(IF1 (LOG>= SUM 128)

(BITS 127 7 0)

(BITS (SI SUMSGND 9) 7 0))))

(RESULT (SETBITS RESULT 32

(+ (* 8 I) 7) (* 8 I)

SUM)))

(ADD8-LOOP-0 (+ I 1) A B SUM RESULT))

(MV SUM RESULT)))

(DEFUN ADD8 (A B)

(LET ((RESULT 0) (SUM 0))

(MV-LET (SUM RESULT) (ADD8-LOOP-0 0 A B SUM RESULT)

RESULT)))

Figure 5: Translation of the signed integer adder

(DEFUN CLZ64-LOOP-0 (I N K C Z) ... )

(DEFUN CLZ64-LOOP-1 (K N C Z)

(DECLARE (XARGS :MEASURE (NFIX (- 6 K))))

(IF (AND (INTEGERP K) (< K 6))

(LET ((N (FLOOR N 2)))

(MV-LET (C Z) (CLZ64-LOOP-0 0 N K C Z)

(CLZ64-LOOP-1 (+ K 1) N C Z)))

(MV N C Z)))

(DEFUN CLZ64-LOOP-2 (I X Z C)

(DECLARE (XARGS :MEASURE (NFIX (- 64 I))))

(IF (AND (INTEGERP I) (< I 64))

(LET ((Z (AS I (LOGNOT1 (BITN X I)) Z))

(C (AS I (BITS 0 5 0) C)))

(CLZ64-LOOP-2 (+ I 1) X Z C))

(MV Z C)))

(DEFUN CLZ64 (X)

(LET ((ASSERT (IN-FUNCTION CLZ64 (LOG<> X 0)))

(Z NIL)

(C NIL))

(MV-LET (Z C) (CLZ64-LOOP-2 0 X Z C)

(LET ((N 64))

(MV-LET (N C Z) (CLZ64-LOOP-1 0 N C Z)

(AG 0 C))))))

Figure 6: Translation of the leading zero counter
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bool compare64(ui64 a, ui64 b) {

bool sgnA = a[63], sgnB = b[63];

bool cin = sgnA || !sgnB;

ui64 sum = ~a ^ ~b;

ui64 carry = ((~a & ~b) << 1) | 1;

ui64 add1, add2;

if (sgnA && !sgnB) {

add1 = sum;

add2 = carry;}

else {

add1 = sgnA ? ui64(~a) : a;

add2 = sgnB ? b : ui64(~b);}

ui65 diff = add1 + add2 + cin;

return !diff[64];}

Figure 7: Signed integer comparison

contains an assertion, a type of statement that we have not discussed. In RAC, as in C, an assertion has
no semantic import but is useful in testing and as documentation. In this case, it indicates that CLZ64 is
not intended to be applied to the argument 0. In the translation, it is represented by the binding of the
dummy variable ASSERT to a call to the macro IN-FUNCTION, defined as follows:

(defmacro in-function (fn term)

‘(if1 ,term () (er hard ’,fn "Assertion ~x0 failed" ’,term)))

Thus, attempted evaluation of (CLZ64 0) results in a run-time error:
HARD ACL2 ERROR in CLZ64: Assertion (LOG<> X 0) failed

5 Proving Theorems about RAC Functions

In this section, we address certain difficulties that arise in the course of proving ACL2 theorems about
translated RAC functions. The techniques presented here have been employed in every Intel or Arm
RAC-based verification effort.

Proving a theorem of interest pertaining to an RTL module of any complexity is best begun, according
to our experience, by analyzing the design and writing out an informal but detailed and rigorous proof.
Some properties of bit vectors are simple enough to be derived automatically with gl [3], but even in
these cases such a proof and the insight gained through its development are valuable. More often, the
written proof must be checked by formalizing it step by step in a long sequence of ACL2 lemmas.

As an illustration, consider the function compare64 of Figure 7, which compares the absolute values
of two 64-bit signed integers. The computation that it performs is more complicated than necessary,
using a fast carry-save adder followed by a slower carry-propagate adder, but it is also more efficient
than the more obvious solutions. This becomes clear upon examination of the following informal (and
uncharacteristically chatty) proof of correctness:

Lemma Let A and B be the signed integers represented by 64-bit vectors a and b. Then

compare64(a,b) = 1⇔ |B|> |A|.

PROOF: We shall examine the case A< 0, B≥ 0; the other cases are simpler. In this case, the function
computes the complements of the operands, the values of which are

~a[63 : 0] = 264−a−1 = 264− (264−|A|)−1 = |A|−1
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and
~b[63 : 0] = 264−b−1 = 264−|B|−1.

If we were to compute the 65-bit sum

diff = ~a[63 : 0]+~b[63 : 0]+2 = (|A|−1)+(264−|B|−1)+2 = 264 + |A|− |B|,

then we could simply look at the most significant bit diff [64] to see whether |A| ≥ |B|. But while introduc-
ing a single carry-in to a carry-propagate adder does not affect the complexity of the operation, adding
2 instead of 1 requires a separate incrementer, consuming nearly as much time as a second addition.
Therefore, the function proceeds by computing the carry-save vectors

add1 = sum = ~a[63 : 0] ^ ~b[63 : 0]

and
add2 = carry = 2(~a[63 : 0] & ~b[63 : 0])+1,

the sum of which, according to Lemma 8.2 of [8], is

~a[63 : 0]+~b[63 : 0]+1 = 264 + |A|− |B|−1,

and then executes a single full addition to compute

diff = add1+add2+1 = 264 + |A|− |B|.

Thus, compare64(a,b) = 1⇔ diff [64] = 0⇔ |B|> |A|. �

The purpose of this example is to illustrate the nature of proofs of this sort: we derive a sequence
of intermediate results pertaining to various local variables, each assertion depending on previous asser-
tions, until we arrive at the desired final result. Next, we would like to formalize this argument in a proof
of the following, which refers to the translation displayed in Figure 8:

(defthm correctness-of-compare64

(implies (and (bvecp a 64) (bvecp b 64))

(equal (compare64 a b)

(if (> (abs (si b 64))

(abs (si a 64)))

1 0))))

Although this result is certainly simple enough for gl, we shall use it as an illustration of the process
of formalizing a mathematical proof pertaining to a RAC program. Even in this case, in which the
sequence of assignments is considerably shorter than one derived from a typical RTL module, we do not
get far in this exercise before realizing that there is no convenient way to formalize the argument given
above. How can we prove a lemma characterizing the bindings of the local variables ADD1 and ADD2

(or even state such a lemma) and then use it to prove another lemma about the value of DIFF? We have
developed a four-step procedure that solves this problem, as illustrated below:

(1) Introduce encapsulated constant functions corresponding to the arguments of the function of in-
terest that are constrained to satisfy the hypotheses of the conjectured statement of correctness:
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(DEFUN COMPARE64 (A B)

(LET* ((SGNA (BITN A 63))

(SGNB (BITN B 63))

(CIN (LOGIOR1 SGNA (LOGNOT1 SGNB)))

(SUM (LOGXOR (BITS (LOGNOT A) 63 0)

(BITS (LOGNOT B) 63 0)))

(CARRY (BITS (LOGIOR (ASH (LOGAND (BITS (LOGNOT A) 63 0)

(BITS (LOGNOT B) 63 0))

1)

1)

63 0)))

(MV-LET (ADD1 ADD2)

(IF1 (LOGAND1 SGNA (LOGNOT1 SGNB))

(MV SUM CARRY)

(MV (BITS (IF1 SGNA (LOGNOT A) A) 63 0)

(BITS (IF1 SGNB B (LOGNOT B)) 63 0)))

(LET ((DIFF (BITS (+ (+ ADD1 ADD2) CIN) 64 0)))

(LOGNOT1 (BITN DIFF 64))))))

Figure 8: Translation of compare64

(defund inputsp (a b)

(and (bvecp a 64) (bvecp b 64)))

(encapsulate (((a) => *) ((b) => *))

(local (defun a () 0))

(local (defun b () 0))

(defthm inputs-ok (inputsp (a) (b))

:hints (("Goal" :in-theory (enable inputsp)))))

(2) Derive definitions of constant functions corresponding to the local variables directly from the
variables’ bindings, and prove that the function maps the input constants to the output constants.
This is a straightforward process, performed automatically by a tool developed by Cuong Chau,
which resides in books/projects/rac/lisp/. (It was previously done by hand, which was
tedious, time-consuming, error-prone.) The output of the tool for the function compare64 is
displayed in Figure 9. Note that the arguments of Chau’s function const-fns-gen include the
function to be transformed and names to be associated with the outputs. The generated functions
allow us to reason about the variables and derive a sequence of lemmas that mirrors the informal
proof outlined above. Note that the theorem, generated with appropriate hints, is established by
the prover simply by expanding all relevant definitions. This can result in unmanageable code
explosion if a function definition is too long. With this in mind, large RAC models must be
designed with sufficient modularity to avoid this result.

(3) Derive the required properties of the outputs:

(defthmd compare64-main

(equal (r) (if (> (abs (si (b) 64)) (abs (si (a) 64))) 1 0)))

Virtually all of the work lies in developing a proof script culminating in this theorem, i.e., a for-
malization of the informal argument presented earlier.
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RTL !>(include-book "~/acl2/books/projects/rac/lisp/internal-fns-gen")

RTL !>(const-fns-gen ’compare64 ’r state)

(DEFUNDD SGNA NIL (BITN (A) 63))

(DEFUNDD SGNB NIL (BITN (B) 63))

(DEFUNDD CIN NIL (LOGIOR1 (SGNA) (LOGNOT1 (SGNB))))

(DEFUNDD SUM NIL

(LOGXOR (BITS (LOGNOT (A)) 63 0)

(BITS (LOGNOT (B)) 63 0)))

(DEFUNDD CARRY NIL

(BITS (LOGIOR (ASH (LOGAND (BITS (LOGNOT (A)) 63 0)

(BITS (LOGNOT (B)) 63 0))

1)

1)

63 0))

(DEFUNDD ADD1 NIL

(IF1 (LOGAND1 (SGNA) (LOGNOT1 (SGNB)))

(SUM)

(BITS (IF1 (SGNA) (LOGNOT (A)) (A)) 63 0)))

(DEFUNDD ADD2 NIL

(IF1 (LOGAND1 (SGNA) (LOGNOT1 (SGNB)))

(CARRY)

(BITS (IF1 (SGNB) (B) (LOGNOT (B))) 63 0)))

(DEFUNDD DIFF NIL (BITS (+ (+ (ADD1) (ADD2)) (CIN)) 64 0))

(DEFUNDD R NIL (LOGNOT1 (BITN (DIFF) 64)))

(DEFTHMD COMPARE64-LEMMA

(EQUAL (R) (COMPARE64 (A) (B)))

:HINTS (("Goal" :DO-NOT ’(PREPROCESS) :EXPAND :LAMBDAS

:IN-THEORY ’(C SGNA SGNB CIN SUM CARRY ADD1 ADD2 DIFF COMPARE64)))))

Figure 9: Automatically generated definitions
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(4) Lift this result by functional instantiation to establish the original statement of correctness. The
lemma to be instantiated is a simple combination of the results of (2) amd (3):

(defthmd lemma-to-be-lifted

(equal (compare64 (a) (b))

(if (> (abs (si (b) 64)) (abs (si (a) 64))) 1 0))

:hints (("Goal" :use (compare64-lemma compare64-main))))

A lemma is functionally instantiated by replacing some subset of the functions that appear in it
with another set of functions. The prover is then obligated to prove the corresponding instances of
all axioms that pertain to the first set, which are usually just their definitions. In this case the only
such axiom is the formula that is exported from the encapsulation that introduced the constants
(a) and (b). The :use hint is formulated as follows:

(defthm correctness-of-compare64

(implies (inputsp a b)

(equal (compare64 a b)

(if (> (abs (si b 64)) (abs (si a 64)))

1 0)))

:hints (("Goal" :use (:functional-instance lemma-to-be-lifted

(a (lambda () (if (inputsp a b) a (a))))

(b (lambda () (if (inputsp a b) b (b))))))))

The choice of instantiation is perhaps best understood by examining the subgoals that it generates.
Subgoal 2 is just the top-level goal with the indicated functional instance inserted as a hypothesis;
Subgoal 1 is the incurred proof obligation mentioned above:

... We are left with the following two subgoals.

Subgoal 2

(IMPLIES (EQUAL (COMPARE64 (IF (INPUTSP A B) A (A))

(IF (INPUTSP A B) B (B)))

(IF (< (ABS (SI (IF (INPUTSP A B) A (A)) 64))

(ABS (SI (IF (INPUTSP A B) B (B)) 64)))

1 0))

(IMPLIES (INPUTSP A B)

(EQUAL (COMPARE64 A B)

(IF (< (ABS (SI A 64)) (ABS (SI B 64)))

1 0)))).

But we reduce the conjecture to T, by case analysis.

Subgoal 1

(INPUTSP (IF (INPUTSP A B) A (A))

(IF (INPUTSP A B) B (B))).

This simplifies, using the simple :rewrite rule INPUTS-OK, to T.

Q.E.D.
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Finally, we note that the book containing const-fns-gen includes a second program, loop-fns-
gen, which is critical in dealing with iterative designs, dividers in particular. Such a module is typi-
cally modeled by a large for loop with a loop variable that is incremented on each iteration. In this
situation, it is necessary to reason about the value of a variable that is computed in a given iteration
and to relate it to values computed in preceding interations. Thus, instead of constant functions,
loop-fns-gen generates a function of a single argument, representing the loop variable, for each
variable that is updated iteratively. Space does not allow an illustration of this technique here, but
examples may be found in the fdiv and fsqrt subdirectories of books/projects/arm.
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