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The x861sa library, incorporated in the ACL2 community books project, provides a formal model
of the x86 instruction-set architecture and supports reasoning about x86 machine-code programs.
However, analyzing x86 programs can be daunting — even for those familiar with program verifi-
cation, in part due to the complexity of the x86 ISA. Furthermore, the x861isa library is a large
framework, and using and/or contributing to it may not seem straightforward. We present some typ-
ical ways of working with the x861isa library, and describe some of its salient features that can
make the analysis of x86 machine-code programs less arduous. We also discuss some capabilities
that are currently missing from these books — we hope that this will encourage the community to
get involved in this project.

1 Introduction

The ACL2 community books contain several machine models (Y86, JVM, etc.) and libraries that aid in
program verification (COI, Stateman, Codewalker, etc.). The x861isa library (: doc x86isa) addsto
this repertoire by providing yet another formal, executable machine model — that of the single-processor
x86 instruction-set architecture, with a specification of 400+ opcodes executing in Intel’s 64-bit mode of
operation. This library also offers the following capabilities:

* A tool to read, parse, and load an executable file (Mach-O [4] and ELF [6] formats) at the appro-
priate memory location of the x86 state;

« Utilities along the lines of the GNU Debugger (GDB) and Pintool [2] to monitor concrete program
runs, and

* Books that provide rules that facilitate symbolic simulation of x86-64 machine-code programs.

Also, there are examples that illustrate how the above were used to set up the model for a program
run, dynamically instrument a program, run co-simulations against an actual x86 processor for model
validation, and perform x86 machine-code proofs. Consequently, the x861isa library, which is still
in active development, is large — currently, it consists of around 60,000 lines of ACL2 (not counting
automatically generated events) and around 240 files.

Just the complexity and size of the x86 ISA can deter people from being serious practitioners of x86
machine-code verification. Therefore, formal tools built to support this undertaking have an obligation
to be easily accessible to the users — at least to those who already have some familiarity with program
verification. To this end, we describe the x861isa library so that a user can find it relatively straightfor-
ward to get started with x86 machine-code analysis. We also present some important capabilities that are
currently missing from this library. We hope that this will encourage the ACL2 community to contribute
to this project, both by way of adding new features themselves and by way of providing feedback that
will help x861 sa become sophisticated over time.

*The author is now at Centaur Technology, Inc., but this work was done as a part of the author’s PhD at UT Austin.
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2 Overview

The x86 ISA model has been developed using the classical interpreter-style of operational semantics that
is prevalent in the ACL2 community: a recursively-defined interpreter over the x86 state is used to ascribe
semantics to x86-64 programs. Models written using this style have the following main components:
a machine state, semantic functions that describe instructions’ behavior, a step function that executes
one instruction by calling the appropriate instruction semantic function, and a run function (i.e., the
interpreter) that calls the step function iteratively. We briefly describe our x86 ISA model in this section,
referring an interested reader elsewhere [13} [10]] for details.

2.1 x86 State

The x86 ISA state has been specified using an abstract stobj [12] called x86. The x86 ISA components
currently supported by our model are: general-purpose registers (rax, rbx, etc.), instruction pointer,
flags register, segment registers (cs, ss, etc.), memory-management registers (gdtr, 1dtr), inter-
rupt/task management registers (1dtr, tr), control registers (cr0, crl, etc.), floating-point registers
(e.g., fp—datao, mmeE], fp-ctrl, fp-status, etc.), XMM registers, MXCSR register, machine-
specific registerﬂ and a byte-addressable main memory that specifies 2°2 bytes. Additionally, x86
contains some fields that control and report on the model’s operation, rather than that of the machine. An
example of such a field is the model state ms — if a model-related error occurs at any point during the
execution of a program (e.g., an unimplemented opcode is encountered), then this field is populated with
information about the error and execution is halted. Thus, the x86 ISA model is expected to reflect the
real machine’s state only if the ms field is empty. We discuss other such fields — the user-level-
mode, page—structure-marking-mode, undef, os—-info, and env — later in this paper.

2.2 Modes of Operation and x86 Memory Interface

Reasoning about all of the x86 machine code involved in the execution of a user-level (application)
program is a huge undertaking. In addition to the x86 code corresponding to the application program
itself, one would need to consider the x86 code corresponding to the underlying system programs as
well. For example, consider a C program that uses print £ to print “Hello, world!” to standard output
— printf is a standard C library function that ultimately relies on the write system call provided
by the OS. Statically compiling this program on an x86 platform generates an executable file of size
0.8MB

For expediency during application program verification, a user may wish to assume, either temporar-
ily or permanently, that the underlying system programs behave as expected. To this end, the x86 ISA
model provides two main modes of operation: the system-level mode and the user-level mode. The
x86 ISA model operates in the user-level mode when the user—level-mode field in x86 is non-nil;
otherwise, it operates in the system mode. Furthermore, the system-level mode offers two sub-modes
of operation — the marking and non-marking mode; a non-nil value in the field page-structure-
marking-mode dictates that the model operate in the system-level marking mode. These two sub-
modes are used to optimize reasoning about certain kinds of system programs, and are discussed later in

L As dictated by the x86 ISA, MMX registers are aliased to the low 64 bits of the FPU’s data registers.

ZIntel defines many MSRs. Our model currently supports only 6 of them: ia32_efer, ia32_fs_base, ia32_gs_-
base, 1a32_kernel_gs_base, 1a32_1lstar,ia32_star,ia32_fmask.

3This program was statically compiled on an Intel Xeon CPU (E31280) using the default options of GCC compiler, version
4.8.4. The standard C library used was Ubuntu EGLIBC, version 2.19.
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Section #.2] For now, we just note that the “true” specification of the x86 ISA is given by the model’s
system-level marking mode of operation, and any discussion about the system-level mode pertains to this
sub-mode unless specified otherwise.

The system-level mode is intended to provide the same environment to a program as is provided by
an x86 processor, and is suitable for the verification of OS routines. The user-level mode is intended for
the verification of application programs under the assumption that the relevant OS services are correct.
In this mode, the x86 system state — which includes some memory-resident data structures like the page
tables — is hidden from the programs. The system-level and user-level modes share a large part of their
code base, but they differ significantly in the view of their memory and the implementation of certain
instructions — we discuss the latter in Section 2.3

The x86 processors offer two main kinds of memories — linear memory and physical memory —
which are indexed by linear and physical addresses, respectively. Physical memory is the RAM addressed
by a processor on its bus. Linear memory is an abstraction of the physical memory that is offered to x86
programs via a memory management mechanism called paging. Paging is used to map a linear address
to physical address using information present in ISA-specified, memory-resident data structures called
the page tables. 64-bit programs cannot access physical memory directly; however, privileged 64-bit
programs can alter the linear-to-physical address mapping by modifying the page tables.

The system-level mode of the x86 ISA model includes a specification of paging, and thus, it has a
model of both linear and physical memory. In this mode, every linear memory access is translated to
the corresponding physical memory access. The user-level mode has a model only of the linear memory
because application programs typically do not get adequate privileges for directly interacting with the
system data structures. The same memory field in x86 is configured to specify physical memory in the
system-level mode and linear memory in the user-level mode. To facilitate code sharing between these
modes, we provide a uniform linear memory interface, where top-level memory accessor and updater
functions call the appropriate mode-specific functions. This prevents us from needing to define two
versions of an x86 ISA specification function.

Both the modes of operation specify yet another x86 memory management mechanism: segmenta-
tion. The system-level mode models segmentation in its full detail, whereas the user-level model cap-
tures only its application-level view. We omit details about this mechanism here because segmentation
is mostly disabled in the 64-bit mode.

2.3 Instruction Semantic Functions

The behavior of each instruction can be defined in terms of reads from and writes to the x86 state. For
example, an add instruction reads the source operands from the x86 state and then writes the following
to the x86 state: the appropriately-sized sum, the updated flags, and the new value of the instruction
pointer. Of course, this is a largely incomplete description of add; we have omitted important details —
such as how operand sizes are determined, when exceptions are thrown, etc. — from this description.

We have modeled 413 x86 instruction opcodes, including arithmetic, floating-point, and control-
flow instructions. The x86 ISA model also contains a specification of some system-mode instructions
like 1gdt, 11dt, 1idt, etc. — these instructions are available only in the system-level mode of
operation. The list of instructions that are specified by our x86 ISA model can be found at |:doc
x86isa::implemented-opcodes.
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2.3.1 Undefined and Random Values

An important part of defining instruction semantic functions is accounting for undefined and/or random
behavior that is inherent in certain instructions. For example, many commonly-used instructions like
mul and div leave certain flags undefined, and the rdrand instruction returns random values. We
specify undefined and random values with the function unde f-read, which simply invokes the func-
tion undef-read-logic.

(defun undef-read-logic (x86)
;; Declarations elided.
(let* ((undef-seed (nfix (undef x86)))
(new—unknown (create-undef undef-seed))
(x86 (!'undef (1+ undef-seed) x86)))
(mv new—-unknown x86)))

(defun—-notinline undef-read (x86)
;; Declarations elided.
(undef-read-logic x86))

The functions undef and !undef are the native accessor and updater functions of the undef field in
the x86 state. The function create—-undef is a constrained function, and its only known property is
that it always returns a natp. After admitting undef-read-logic, we make ! undef untouchable
(see :doc push-untouchable) to ensure that undef-read-1logic is the only function that can
modify this undef field. Also, we never use create-undef in any function other than undef-

read-logic

The upshot of all of this arrangement is that unde f-read-1ogic always returns an indeterminate
value that can be used to specify either an undefined or a random Valueﬂ Every call of undef-read-
logic produces a value that is equal to create-undef invoked with the current value of the unde f
field, and the undef field is incremented every time undef-read-logic is called. Since !undef
and create-undef are never used outside undef-read-logic, create-undef always gets
unique arguments. Essentially, this arrangement gives us a pool of indeterminate values that can be used
when required.

We need to model all possible behaviors resulting from an indeterminate value while reasoning, but
an appropriate concrete value is needed during execution. To this end, we use undef-read (instead
of undef-read-1logic) as our top-level specification function, and re-define it under the hood us-
ing include-raw so that undef-read-1logic is used for reasoning and undef-read-exec is
used for execution; we omit the definition of undef-read-exec here. Note that undef-read is
directed to not be inlined by the Lisp compiler because re-definition of inlined functions may result in
unpredictable behavior.

(defun undef-readS$notinline (x86)
;; Declarations elided.
(when
;; When the x86 model is being used for reasoning:
(or (equal (f-get—-global
'"in-prove-read ACL2::*the-live-statex)

“4Indeterminate values have the following useful property: the result of an equality test of an indeterminate value with any
other value is unknown.
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t)
(equal (f-get—-global
'in-verify-read ACL2::xthe-live-statex)
t))
(return-from X86ISA::undef-readSnotinline
(X86ISA::undef-read-logic x86)))

;7 When the x86 model is being used for concrete execution:
(undef-read-exec x86))

2.3.2 System Calls and Non-Determinism

In addition to the memory model and availability of system-level instructions, a significant difference
between the system-level and user-level modes is in their treatment of system calls. System calls are
requests for services made by an application program to the OS. The syscall instruction, used by
application programs, transfers control to a more privileged system sub-routine. The corresponding
instruction sysret is used by system sub-routines to transfer control back to the application program.
In the system-level mode, these two instructions are modeled as per their specifications in the Intel
ISA manuals [1]. In the user-level mode, the specification of syscall has been extended to provide
the semantics of some commonly used system calls like read, write, open, close, 1seek, dup,
link, and unlink. These system calls are OS-specific — for instance, the specification of read
on FreeBSD is somewhat different from that on Linux. The os—info field in the x86 state is used
to identify the OS under consideration so that the appropriate semantic function for these system calls
can be chosen. The extended semantics of syscall is intended to capture system call behavior in its
entirety, right from its invocation to its return, and therefore, the SYSRET instruction is unavailable in the
user-level mode. We validate our system call specification functions by running co-simulations against
the real machine plus the chosen OS.

System calls can exhibit different behaviors for different runs, even if given the same inputs —
thus, they are non-deterministic from the point of view of an application programmer. Consider a read
system call that is invoked to read from a file. It is possible that one run be successful, but another result
in failure if the file has been deleted. In order to formally characterize the interaction of an application
program with the underlying OS, we model an external environment using the env field in x8 6 — this
field represents the part of the external world that affects or is affected by system calls. The env field
includes a file system and an oracle sub-field that specifies the result of non-deterministic computations.
For example, the file descriptor (or handle) assigned to a file by the open system call is the lowest-
numbered 32-bit file descriptor not currently open for that process — this descriptor may be different
for different invocations of the system call, and thus, we obtain it from the oracle. The oracle is a map
of linear addresses to a list of values; if it needs to be consulted during the execution of an instruction,
then the first value in the list corresponding to the address of the instruction is returned. It is the user’s
responsibility to initialize env, and hence, the oracle, appropriately while reasoning — this provides a
way to state precisely the expectations from the environment. For instance, when reasoning about the
open system call, the env field in the initial x86 state can be constrained in such a way that the oracle
returns an arbitrary 32-bit natural number that can be used as a file descriptor.

Our system call specification functions are re-defined in the same manner as undef-read so that
foreign C/Assembly functionsE] are invoked during concrete executions — these foreign functions request

5We rely on CCL’s [Foreign Function Interface for the execution of system calls.
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the system call service from the underlying OS (i.e., the host OS running ACL2) and return the results to
the ACL2 caller function. The os—info field (and for that matter, env too) is irrelevant during concrete
executions.

Note that the env field could have been used to specify undefined and random values too — the user
could constrain the oracle to contain appropriate symbolic values (corresponding to the undefined and
random values) at appropriate linear addresses (corresponding to the linear addresses of the instructions
that generate these indeterminate values). Why then do we use the arrangement with the unde £ field?
One reason is that these fields serve separate purposes. The env field is used to specify non-deterministic
behavior resulting from reliance on an external environment, whereas the unde £ field is used to model
indeterminateness in the ISA itself. Another reason is convenience — if env were used instead of
undef, the user would have to initialize the oracle in env whenever instructions that write undefined or
random values in some state components are to be executed. Such instructions — especially those that
leave some flags undefined, like mul and div — are encountered frequently in a typical program, and
using the undef field saves the user quite a lot of work.

2.4 Interpreter

The x86 step function, called x86—-fetch-decode—execute, fetches the next instruction from the
memory (which is located at the address in the instruction pointer register r ip), decodes it, and then calls
the appropriate instruction semantic function. The run function, x86—run, is the x86 ISA interpreter.
Its definition is straightforward:

(defun x86—-run (n x86)
;; Declarations elided.
;;, Halt if there is a problem indicated by the ms
;; field, or i1f there are no more instructions
;; left to execute.
(cond ((ms x86) x86)

((zp n) x86)
(t (letx ((x86 (x86—fetch—-decode—execute x86))
(n (1- n)))
(x86—run n x86)))))

3 Dynamic Instrumentation of x86 Programs

Like most machine models written in ACL2, the x86 ISA model is also executable. The execution
speed of the model is around 3.3 million instructions/second in the user-level mode and around 320,000
instructions/second in the system-level mode with a set-up of 1G page-table conﬁguratiorﬁ One can
validate the model against a real x86 processor by performing co-simulations. The model can be used as
an instruction-set simulator to inspect the behavior of x86 machine-code programs by running concrete
tests. It is generally a good idea to run such tests before reasoning about a program — testing may reveal
“obvious” bugs quickly and may also help in program comprehension. We describe how to set up the
x86 ISA model for a concrete run of a program and how to dynamically instrument a program run.

OThis speed was measured on a Intel Xeon E31280 CPU @ 3.50GHz with 32GB RAM.
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3.1 Initializing the x86 ISA Model for a Concrete Run

If not already available, obtain the x86 machine-code version of the program to be executed — for
instance, a given C source program foo . ¢ can be compiled on an x86 machine using GCC or LLVM to
obtain the executable file foo.o. The file foo. o contains information that is necessary to execute the
program, such as the x86 machine code itself, program’s data, linear addresses where the various sections
of the program must be placed, etc. Independently of the x86 ISA model, one can examine executable
files using tools such as objdump and ot ool.

Now all we have to do is arrange for foo. o to be read in and parsed by the x86 model and then
initialize the x86 state appropriately based on the information in foo.o. To this end, we recommend
creating a fresh file, say foo-run. 1sp, which contains the following events:

1. Include the top-level x861sa book.

(in-package "X86ISA")
(include-book "projects/x86isa/top" :dir :system :ttags :all)

2. The default value of user—level-mode field in the x86 state is t. Thus, if operation in the
user-level mode is required (probably because foo. c is an application program), then go to the
next step. However, in the system-level mode, the x86 state includes a model of the physical
memory. Since foo.o contains memory locations in the linear address space, the paging data
structures must be set up before foo . o is read and loaded into the x86 state.

We provide a function init-system-level-mode that switches the model to the system-
level mode by writing nil to the user—level-mode field and loads our default configuration
of paging data structures in the model’s physical memory at a specified address, say O for this con-
trived example. This value O is also written to the control register cr 3 so that the processor knows
where to locate the paging data structures in the physical memory. Our default data structures
simply provide an identity mapping from linear to physical addresses.

(init-system—-level-mode 0 x86)

A user can choose to load his own configuration of paging data structures by writing to the physical
memory in the x86 state directly.

3. The programin foo . o can be read and loaded into the memory of the x86 state by using binary-
file-load. At this time, binary-file—-1load supports only ELF [6] (commonly used on
Unix systems) or Mach-O [4] (commonly used on FreeBSD/Darwin systems) binaries.

(binary-file-load "foo.o")

Note that if instead of an executable file, the x86 machine-code program is available simply as
a list of bytes intended to be located at a particular linear memory location (or some other such
formulation), it is straightforward to load it into the model by simply writing these bytes to the
memory — see the following step.

4. Other components of the x86 state, like the instruction pointer, registers, etc., can be initialized by
using init-x86-state.
(init—-x86—-state
<initial contents of MS field —--- typically nil>
<initial value of the instruction pointer>
<linear address where execution should halt>
<initial values of various registers...>


http://man7.org/linux/man-pages/man1/objdump.1.html
https://www.freebsd.org/cgi/man.cgi?query=otool&sektion=1&manpath=Darwin+8.0.1%2fppc
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<updates to the memory>
x86)

Alternatively, one may use the stobj’s native updater functions to write to the x86 state.

5. Run the program by executing x8 6—run — the run function will either execute <n> number of
steps, or terminate early if either an error is encountered or if the instruction pointer contains the
linear address where execution is instructed to halt (see third argument of init-x86-state
above).

(x86—run <n> x86)

The contents of the ms field after the termination of this run will indicate whether the program
ran successfully or not. One can also dynamically debug the program, as described in Section [3.2]
below. Upon the successful completion of the program, its output can be inspected by reading the
relevant components in the final x86 state.

Note that if one needs to perform another concrete run of the program in the same ACL?2 session,
the x86 state must be initialized again — in particular, the instruction pointer must point to the first
instruction to be executed and the ms field must be nil.

All these utilities aside, how does one determine the initial values of the components of the x86
state? A user familiar with x86 assembly and/or machine code may be able to figure this out simply by
“reading” the program — this task may be easier if the high-level source program is available too. A
possibly less time-consuming alternative is to run the program on the real machine (or an instruction-set
simulator like QEMU [3]]) and take a snapshot of the contents of registers, flags, memory locations, etc.
immediately before the first instruction to be executed. The x86 model’s state can be initialized with all
of these values. This second approach has the benefit that the model’s initial state matches that of the
real machine, which helps in model validation via co-simulations.

The topic : doc x86isa: :program-execution|contains more information on initializing the
x86 state. Examples of such foo-run. 1sp files for various programs are also available online.

3.2 Monitoring a Concrete Run on the x86 ISA Model

Tools like the GDB (GNU Debugger) and Pintool are used to monitor x86 machine-code programs at
runtime. GDB allows profiling by executing a program one instruction at a time, inserting breakpoints,
etc., whereas Pintool injects instrumentation code into the program itseliﬂ We provide some utilities in
the x861 sa library that mimic these tools; the capabilities currently provided are as follows:

* Stepping the interpreter once, a la stepi command of GDB;
 Stepping the interpreter n instructions at a time;

* Inserting breakpoints where the execution of the program will stop: Arbitrary ACL2 functions
can be used to define these stopping points. An illustrative example is as follows: one can write
an ACL?2 function that computes the sum of values in a range of memory addresses and insert a
breakpoint that instructs the x86 interpreter to halt as soon as the value returned by this function
becomes greater than the current value of the rax register.

* Logging all memory read and write operations;

"It should be noted that instrumentation code, such as that included by Pintool, is supposed to be transparent to the program;
however, it is not unexpected for such code to inadvertently alter the behavior of the program. Instead of injecting x86 machine
code, our utilities monitor the ACL2 specification functions of our x86 model.


http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=X86ISA____PROGRAM-EXECUTION
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* Logging the x86 state (sans the memory) — either the current x86 state or the x86 state obtained
after every instruction or after every breakpoint can be logged to a file.

The ability to log the x86 state is useful in co-simulations — one can simply compare the logs generated
by the program to those by the model in order to perform model validation. Syntax and usage of our
monitoring utilities are described at|: doc x86isa::dynamic-instrumentation.

4 Formal Analysis of x86 Programs

Given an ACL2 machine model defined using operational semantics, various code proof styles can be
used for program verification. We do not discuss them in this paper, and refer the reader elsewhere [§]]
for details. However, central to almost all these proof styles is the ability to symbolically simulate a
program. The x861isa books provide the usual ACL2 rules that enable symbolic simulation of x86
machine-code programs by controlling the unwinding of the interpreter.

1. Step Function Opener Rule: This rule dictates the conditions under which a call of the step
function, x86-fetch-decode-execute, should be expanded by ACL2. For instance, one of
these conditions is that the ms field in the initial x86 state should be nil. Because of this rule,
ACL2 first expands that call of the step function about which enough information to resolve the
hypotheses of this rule is known. Typically, this means expanding the call corresponding to the
current instruction (i.e., the instruction located at the address contained in the instruction pointer).

2. Run Function Sequential Composition Rule: This rule facilitates compositional reasoning by
reducing the problem of reasoning about (n1 + n2) number of instructions to two smaller prob-
lems — first reasoning about n1 instructions, and then about n2 instructions. That is, it rewrites
expressions of the form (x86-run (clk+ nl n2) x86) to (x86-—run n2 (x86-run
nl x86)) when applicable.

3. Run Function Opener Rule: This rule controls the expansion of the run function by rewriting
(x86—run n x86) to (x86—run (1- n) (x86-fetch-decode-execute x86)),
provided that the ms field is nil and n is not equal to zero.

Additionally, the x8 61 sa books also contain read-over-write and write-over-write rules that describe
the interaction between the x86 state accessor and updater functions using the notions of non-interference
and overlap. An example of a simple non-interference property is that a write to a register i does not
interfere with a subsequent read from a register j, provided that i and j are distinct. Analogously, an
example of a simple overlap property is that if consecutive writes are made to register i, then the most
recent write will be the only visible one.

Thus, the x861 sa books include the typical ACL2 rules that will be immediately familiar to a user
with some experience in code proofs. These books provide lemma libraries to support almost completely
automated symbolic simulation of many x86 programs — we have also documented how a user can debug
a failed attempt at unwinding the x86 interpreter (: doc x86isa: :debugging—code-proofs).
We now give some examples of reasoning about x86 machine-code programs as a way to illustrate the
different methodologies a user can adopt when working with the x8 61 sa books.

4.1 Verifying Application Programs

The user-level mode of operation of the x86 ISA model is well-suited to application program verifi-
cation, due to reasons discussed previously in Section 2.2l We consider the following two kinds of


http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=X86ISA____DYNAMIC-INSTRUMENTATION
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application programs here: the first is structurally simple and contains straight-line code that performs
dense arithmetic and logical operations on fixed-width inputs (e.g., sub-routines that do bit twiddling),
and the second contains loops, branches, and maybe even makes some system calls (e.g., a sub-routine
that computes the word-count of a file).

Using the x861isa books, one can choose to verify the first program completely automatically —
without using any rules provided by the x861isa books — by using the bit-blasting capabilities of
GL [15,116] but at the expense of a general theorem of correctness. That is, one may need to constrain
the initial x86 state by assigning concrete values instead of symbolic ones to certain components in
order to reduce the complexity of the AIGs generated by GL, thereby making the problem tractable for
bit-blasting. An example of such a theorem is x86-popcount-64-correct below, which states
that a given program that is intended to compute the population count of its 64-bit input n meets its
specification (proof script and a detailed description [[11]] are available). This theorem is in terms of the
program being located at fixed addresses instead of being (mostly) position—independenﬂ — note that
*popcount—64« is a list of pairs of fixed linear addresses and the program’s bytes.

(defconst xpopcount-64x«

(list

(cons #x400650 #x89) ;,; mov %edi, %edx

(cons #x400651 #xfa)
(cons #x4006c2 #xc3) ;,; retqg
))

many instructions elided

(def-gl-thm x86-popcount-64-correct

thyp (and (natp n)

(< n (expt 2 64)))
:concl
(bx ((start—-address #x400650)
(halt—address #x4006c2)

Assigning default values to state components:
86 (create—x86))
86 (!'user—-level-mode t x86))
mv flg x86)
init-x86-state
nil start-address halt-address
nil nil nil 0 xpopcount-64x x86))

;; Input n is symbolic and located in rdi.

(x86 (wr64 xrdix n x86))

;; 300 is the upper bound on the number of steps to take.

;; Execution halts 1f the halt-address 1s reached earlier.

(x86 (x86-—run 300 x86)))

(and
;; No error was encountered during state initialization.

(x
(x
((

(

(equal flg nil)

8We say “mostly” because a program’s location, even a parameterized one, needs to be constrained in some important ways
so that it does not overlap with the stack, data, etc.


http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____GL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____GL
https://github.com/acl2/acl2/tree/master/books/projects/x86isa/proofs/popcount/popcount.lisp
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;; rax contains the popcount of n.

(equal (rgfi *raxx x86) (logcount n))

;7 rip contains the address of the instruction following the
;; halt address.

(equal (rip x86) (+ 1 halt-address))))

:g-bindings

" ((n (:g-number , (gl-int 0 1 65)))))

Of course, such a theorem is not useful if re-compiling the same high-level program results in a
different machine-code program, which may be located at a different linear memory location or may
use different x86 instructions altogether. The former case would not have been a problem if x86-
popcount-64—-correct was a statement about the position-independent version of the program,
whereas the latter case is a downside of machine-code verification in general. The benefit of this ap-
proach is that it provides a simple solution in both these situations. A user can simply re-submit the new
conjecture to ACL2 so that the proof proceeds completely automatically as before.

GL may reach its limits if used to verify the second kind of program, which is structurally complex
and whose proof involves determining inductive invariants. One can reason about this program on the
x86 ISA model using the classical clock functions approach [9]]. A clock function computes the number
of steps needed for the program to reach a desired state. The program’s correctness can be stated as
follows: given a state x86; that satisfies some preconditions, the final state x86¢ = x86-run (n,
x86;), where n denotes the (possibly symbolic) value computed by the clock function, satisfies some
postconditions. For instance, we verified a word-count program that makes system calls to read input
from a file — the [proof script and a detailed description [[14]] are available. One of the final theorems of
correctness for this program is as follows. The function preconditions specifies general conditions
for the correctness of this program — e.g., the program is located at a suitable symbolic address addr
in the initial x86 state, whose various components contain symbolic values.

(defthm program-behavior-nc
(implies
(and (preconditions addr x86)
(equal offset (offset x86))
(equal str-bytes (input x86)))
(equal
;; nc: gets the number of characters computed by the program
;; from the x86 state
(nc (x86-run (clock str-bytes x86) x86))
;7 nc-spec: specification function that computes the number
;; Of characters
(nc—spec offset str-bytes))))
Though the amount of user interaction required is higher in this case, one obtains a more general correct-
ness theorem than that for the first program. The applicability of this theorem is still adversely affected
in case the machine-code program generated by re-compiling the source program contains different x86
instructions. However, it is possible that one may be able to re-use some lemmas from the proof script.

In addition to functional correctness, the x861isa books provide lemmas that help in the proof of
other kinds of properties. For instance, for the word-count program, we proved that the values in all
memory locations, except the program’s stack, in the final x86 state are exactly the same as that in the
initial state. In other words, this theorem states that at the end of its execution, the word-count program
did not change any values in unintended regions of memory.


https://github.com/acl2/acl2/tree/master/books/projects/x86isa/proofs/wordCount/wc.lisp
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We note that the position-independent version of the popcount program can also be verified using the
clock functions approach without incurring too much overhead. The lemmas supporting symbolic sim-
ulation in the x861isa books can help in automatically obtaining the ACL2 expression corresponding
to the value in the rax register in the final x86 state, and GL can be used to prove that this expression
computes the same value as that computed by 1ogcount. This ACL2 expression obtained after sym-
bolic simulation will change if the instructions in the machine program change due to re-compilation of
the source code. In this case too, one can use GL to automatically prove the equality of this expression
with 1ogcount. Thus, not only does this approach win us a general theorem of correctness, but it also
provides a relatively cheap way of re-proving a general correctness theorem in case the program changes.
In this manner, GL can be used to reason about computationally intensive pieces of code in a structurally
complex program, and lemmas provided by the x861isa books can be used to perform compositional
reasoning to obtain the proof of correctness of the entire program. More details can be found along with
the popcount proof script.

4.2 Verifying System Programs

System programs can also be verified using the same strategies as application programs. However,
generally speaking, the reasoning overhead of system programs is higher because they access and modify
a larger x86 state than application programs. In this paper, we focus only on the upshot of the processor’s
side-effect updates to accessed and dirty flags during address translation via paging.

The accessed and dirty flags are two fields present in the entries of the paging data structures. When-
ever an entry is referenced during an address translation, the processor sets its accessed flag. When the
translation is done on behalf of a memory write operation, then the processor sets the dirty flag in the
final entry that points to the physical address. Effectively, these updates are side-effects of the processor
as it works to translate a linear address. Thus, all linear memory operations — including memory reads
— modify the memory, as a result of which one needs to establish non-interference (or overlap) prop-
erties about every linear memory operation. These side-effect updates are numerous — merely fetching
one byte of an x86 instruction from the memory can cause many side-effect updates. The sheer number
of these side-effect updates increases reasoning overhead significantly.

The system-level mode of operation offers two sub-modes — marking and non-marking mode —
that are exactly the same except in their treatment of these side-effect updates. The marking mode of
operation specifies these side-effect updates to the accessed and dirty flags, whereas the non-marking
mode suppresses them. For supervisor-mode programs that do not depend on these side-effect updates,
we recommend verifying the program in the non-marking mode and then porting the proof over to the
marking mode. This is because of the simpler linear memory non-interference theorems in the non-
marking mode — these theorems have fewer hypotheses in the non-marking mode because one does not
have to preclude reads from those regions of the memory that are changed by the side-effect updates.
Porting the proof over to the marking mode is simply a matter of adding relevant (and mostly obvious)
disjointness preconditions to the theorems — for example, the paging entries that govern the translation
of the program and the program itself must be disjoint. Note that this condition was unnecessary in the
non-marking mode because the paging entries of the program are not modified over the course of its
execution. The x8 61 sa library contains books that includes a proof of correctness of a supervisor-mode
zero-copy| program that manipulates the paging data structures; this proof illustrates this methodology of
first using the non-marking mode and then the marking mode to verify system programs.


https://github.com/acl2/acl2/tree/master/books/projects/x86isa/proofs/popcount/popcount-general.lisp
https://github.com/acl2/acl2/tree/master/books/projects/x86isa/proofs/zeroCopy
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5 HowDol...?

We anticipate and answer some specific how-to questions that may be asked by a user and potential fu-
ture contributor to the x861isa books.

How do I add a new component to the x86 state?
The x86 state is defined using an abstract stobj [[12] layered on top of a concrete stobj [[7]. The “default”
abstract representation in our model for simple fields is the same as the logical representation of the
concrete field; for array fields, it is a record [5] with a default value of 0.

Suppose one wanted to add the (currently missing) 64-bit Extended Control Register xcr0 to the
x86 state. One must first add a suitable field to the concrete stobj x86S$c. Note that xcr0S$c is a simple
(non-array) field.

(xcr0$c :type (unsigned-byte 64) :initially 0)

The x861isa books contain macros that use the above expression to generate suitable events that will
help in defining and admitting the corresponding abstract stobj. For instance, the abstract and top-level
recognizer, accessor, and updater functions, along with the correspondence function pertaining to this
field will be automatically generated. One would have to resolve the proof obligations that establish the
correspondence between the concrete and abstract stobjs (these obligations are generated automatically
by the defabsstobj event), but these will be straightforward for “default” abstract representations.

If a different abstract representation for the new component is required, one would have to disable
the automated generation of events for this component and manually define the appropriate events. The
memory model in our x86 state is an example of where we used this manual approach — the corre-
spondence relation between the concrete and abstract representation of the x86 memory is complicated.
Memory is implemented using accessor, updater, and recognizer functions operating on three distinct
fields in the concrete stobj, and these functions have been proved to correspond to those operating on a
single record field in the abstract stobj. See [12, [17] for details.

We now discuss a modeling quirk of MSRs (machine-specific registers), since it is likely that a user
might want to add more MSRs than are currently supported by our x86 model. The x86 ISA defines
several architecture-specific MSRs (possibly, hundreds), but we model only six of them using an array
field in the concrete stobj and a corresponding record in the abstract stobj. In order to add a new MSR,
simply increase the number of elements of the msr$c field. The caveat here is that unlike other registers,
the index of an MSR in our x86 state does not match its identifier on the real machine. For example, the
0" general-purpose register in the x86 state of our model is the rax, and 0 is also its identifier on the real
machine. It suffices to define one constant — xrax* = 0 — pertaining to this register. However, the
0" MSR in our x86 state corresponds to the ia32_efer register, whose identifier on the real machine
is 0xC000_0080. Thus, we define two constants pertaining to MSRs: one for the real identifier and one
for indexing into the msr field of our model. For instance, x1a32_efer« is equal to 0xC000_0080
whereas x1a32_efer-idxx is equal to 0. If an x86 instruction uses an identifier equal to xia32_-
eferx, our specifications use *ia32_efer—idxx« to access this register.

How do I add a new x86 instruction?
There are four main tasks here:

1. Add the capability to decode the instruction: The Intel manuals [1]] have various tables that contain
the decoding information of x86 instructions, such as their addressing information (e.g., whether
the instruction uses a ModR/M byte to determine the location of its operands), default sizes, etc.
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The x861isa books have the Lisp/ACL2 representation of these tables (see [this book) — any
instruction with a one- or two-byte x86 opcode can be decoded using our ACL2 functions that
read information off these tables. For all other instructions (e.g., those that have three-byte op-
codes), one would have to manually port some more relevant tables from the Intel manuals into
the x861sa books.

2. Write the instruction semantic function: The x861isa books supply a def-1inst macro to spec-
ify instruction semantic functions. This macro is simply a wrapper around|de f i ne|— it also adds
the instruction’s details to a table automatically so that one can keep track of the opcodes supported
by the x861 sa books.

3. Extend the step function: Depending on the opcode of an instruction, the step function x86—
fetch-decode-execute dispatches control to an appropriate instruction semantic function.
Simply invoke the new instruction semantic function from the step function.

4. Validate the instruction’s specification: Using utilities described in Section [3] run co-simulations
of the model against the real machine to validate the new instruction semantic function.

How do I abstract away the behavior of a standard C library function, say print f or scanf?
As described earlier, the user-level mode of operation extends the semantics of the syscall instruction
to support both reasoning and execution of some OS-provided system calls. Standard C library functions
like print f and scanft are built on top of these system calls. One may want to assume the correctness
of these library functions instead of the lower-level system calls when reasoning about an application
program.

One solution is to create yet another mode of operation of the x86 ISA model — say, a strong
user-level mode — where the semantics of call, jmp, and any other branch/control-flow instruction
have been extended to support these standard library functions. Note that similar to system calls, these
functions will be non-deterministic from the point of view of the application. Thus, one can use the env
field to model the external environment that these library functions depend on.

6 Potential Future Projects

Though the x861sa books model a significant portion of the x86-64 ISA, they are incomplete. Also,
there are several ways in which its lemma libraries can be improved. We now discuss some short- and
long-term projects that, once completed, can improve the quality and feature-set of x861sa. Of course,
this list is non-exhaustive.

ISA Modeling Projects

» Exceptions and Interrupts: As of this writing, the x8 61 sa books model system registers relevant
to both exceptions and interrupts (idtr, gdtr, 1dtr, and tr) and contain a specification of
the Interrupt, Global, and Local Descriptor Tables (IDT/GDT/LDT), including recognizers for
well-formed table entries or gates. These gates contain information about the location of the
interrupt- or exception-handling procedures. The x861sa books also support system instructions
like 1gdt, 11dt, and 1idt used to initialize the system registers.

We already support exceptions in a limited sense — whenever we detect that an error condition
is reached (for example, if a div instruction’s divisor operand is 0, which corresponds to a #DE


https://github.com/acl2/acl2/tree/master/books/projects/x86isa/utils/decoding-utilities.lisp
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFINE
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exception; or if a paging entry encountered during a page walk is ill-formed, which corresponds to
a #PF exception), we populate the ms field with some information relevant to this exception and
halt the interpreter. Currently, the preconditions for the correctness of programs analyzed using
x861sa weed out all such erroneous conditions. In order to support exceptions in their entirety,
the appropriate exception-handling procedures must be called by looking up relevant information
in the descriptor tables — the current solution of populating the ms is only a stopgap. On the other
hand, interrupts are asynchronous events (unlike exceptions) and their implementation is likely to
require some significant changes/additions to the x86 ISA model. For example, since all interrupts
are guaranteed to be taken on an instruction boundary, we could consult an oracle to check for
the occurrence of some interrupt at every such boundary. Upon encountering one, we can transfer
control to the appropriate interrupt-handling procedure. Note that one would need to modify the
step and/or the run functions if we adopt this approach.

Given that much of the support required for implementing both exceptions and interrupts already
exists in the x86 model, we estimate that this will be a relatively short-term project.

* 1/0 Capabilities: 1/0 instructions like in and out are not supported by x861isa yet. Implement-
ing them will also be a short-term project because the existing infrastructure around env can be
re-used to characterize interaction of the processor with an external environment.

* Caches and Multiprocessors: Our x86 model can be extended to include the entire memory hier-
archy — including caches, translation-look aside buffers, store buffers, etc. — in order to obtain
a complete specification of how memory reads and writes are resolved by multiple processors.
This promises to be quite a long-term project because it would involve dealing with complicated
properties like cache coherence.

We briefly comment on a challenge that a contributor to the x861sa books is likely to face when
modeling some advanced features of the x86 ISA, such as interrupts or protection management. Ideally,
to validate the x86 ISA model, one must co-simulate it against a “bare” x86 processor, i.e., one not
running any OS. However, a bare x86 machine is difficult to work with, and so far we have validated
our model against an x86 ISA processor running a mainstream OS like Linuxﬂ Unfortunately, an OS
is tightly inter-twined with the workings of a processor’s system features, thereby making it difficult to
separate OS-specific behavior from the machine’s behavior. We posit that a satisfactory way to validate
the specification of system features is by running a mainstream (if stripped down) OS on the x86 ISA
model. This task will require adding several features and instructions currently missing from x861isa.
Not only will this undertaking increase confidence in the accuracy of the x86 model, but it will also
enable us to reason about real system code that is deployed on modern machines. Needless to say, this
is a formidable long-term project, but one with high returns.

Proof-related Projects

» Using Codewalker: One can imagine using Codewalker to lift reasoning about x86 machine code
to high-level specification functions. This project may involve adding capabilities to the Code-
walker and/or x861sa books.

* Automated Precondition Discovery: A challenging aspect of program verification is discovering
the preconditions under which a program behaves as expected. One way in which ACL2 users
figure out some of the preconditions is by observing the reason why some rules fail to fire when

90f course, one could also choose to validate the x86 ISA model against a hardened instruction-set simulator like QEMU.
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expected, and then adding any missing hypotheses to the conjecture that make those rules appli-
cable to the goal at hand. A useful project could be to automate this process so that after a failed
proof attempt, a user is presented with hypotheses that are good candidates to be top-level precon-
ditions. One can imagine such a capability to be useful in other ACL2 projects too. As such, this
project can easily be a long-term one.

7 Conclusion

This paper serves as a good starting point for a user or a potential future developer of the x8 61 sa books.
We recommend that a new user and/or someone with little experience in low-level code verification
begin by executing some concrete runs of a program on the x86 model before moving on to program
verification. Also, it is advisable — for both reasoning and execution — to first use the x86 model in its
user-level mode instead of the more complicated system-level mode of operation.

We give an overview of the development style and capabilities of the x861sa books in this paper.
However, a more complete description is available [[L0] — this work’s accompanying Ph.D. dissertation
describes how the x86 model is optimized for both reasoning and execution efficiency, how complicated
x86 ISA mechanisms such as IA-32e paging and segmentation are specified, how congruence-based
rewriting is used to reduce reasoning overhead in the system-level mode of operation, and other pertinent
details. Also, the most up-to-date information about these books is available at|: doc x86isa.

There are many ways in which these books can be used and/or extended, beyond what we discussed
in the previous section. An example of one such application of this work, not related to program veri-
fication, is micro-architecture verification — e.g., one can use the x86 ISA model to prove that one or
more x86 micro-operations implement an ISA-level instruction. This work paves the way for research
and engineering opportunities that would otherwise have been difficult to pursue — we hope that the
community gets involved in this project.
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