
Warren Hunt Jr. and Anna Slobodova (Eds.):

ACL2 Theorem Prover and its Applications

EPTCS 249, 2017, pp. 30–46, doi:10.4204/EPTCS.249.3

A Computationally Surveyable Proof

of the Group Properties of an Elliptic Curve

David M. Russinoff

david@russinoff.com

We present an elementary proof of the abelian group properties of the elliptic curve known as

Curve25519, as a component of a comprehensive proof of correctness of a hardware implementa-

tion of the associated Diffie-Hellman key agreement algorithm. The entire proof has been formalized

and mechanically verified with ACL2, and is computationally surveyable in the sense that all steps

that require mechanical support are presented in such a way that they may be readily reproduced in

any suitable programming language.

1 Introduction

An effort is under way at Intel to develop and verify a formal model and a hardware implementation of

the elliptic curve key agreement algorithm known as Curve25519 [2], using ACL2. The most challenging

aspect of this problem is the proof of the abelian group properties of the curve, especially associativity.

This result may be viewed either as a deep theorem of algebraic or projective geometry [6, 3], accessible

only to experts in that field, or as an elementary but computationally intensive arithmetic exercise, involv-

ing, as Bernstein [2] observes, “standard (but lengthy) calculations”. Silverman and Tate [10] attempt to

quantify the effort with a “tongue-in-cheek estimate”:

Of course, there are a lot of cases to consider But in a few days you will be able to

check associativity using these formulas. So we need say nothing more about the proof of

the associative law!

What remains to be said is that there is compelling evidence (see below) that an elementary hand proof

of this result is a practical impossibility. The first serious attack on the problem, by Friedl [4], was

a combination of mathematical analysis and symbolic computation with the CoCoA (Computations in

Commutative Algebra) package. Building on Friedl’s results, Théry [11] later developed a comprehen-

sive formal proof with Coq. (Both papers address the somewhat more general class of Weierstrass curves

rather than the one on which we focus here, but there is no difference in computational complexity.)

These two efforts, which together represent a significant achievement, may be contrasted in the termi-

nology of automated reasoning [1]: Friedl’s work is accepting insofar as it treats CoCoA as a trusted

oracle, whereas Théry’s proof is autarkic by virtue of performing all logical deductions and supporting

computations within the same formal system.

From a traditional mathematical perspective, however, both of these results are open to the same

common criticism of computer-assisted proofs. There is general agreement in the mathematical com-

munity that it is desirable for a proof to be surveyable in the sense that each of its assertions could be

derived manually by a competent reader as a logical consequence of preceding assertions and otherwise

established results, and that the proof is short enough to be comprehended. One goal behind this prin-

ciple is correctness, but equally important is the desire for mathematical growth—the propagation and

advancement of techniques and ideas.

http://dx.doi.org/10.4204/EPTCS.249.3

D.M. Russinoff 31

In the realm of computing, this is often an unattainable objective—reliance on a mechanical proof

assistant may be unavoidable. It is common to find in a published proof in this field, in lieu of a cogent

argument, an appeal to the authority of an established proof system. This device is a stark realization of

Tymoczko’s allegory of the infallible Martian genius whose proclamations go unquestioned—proof by

“Simon Says” [12]. It may provide evidence of correctness but does little to illuminate the underlying

mathematics.

Dependence on mechanical assistance, however, need not preclude a full exposition of a proof. For

example, the correctness of a hardware divider typically depends on a relation between the value and

indices of each entry of an array that is too large to be either generated or checked by hand, but it should

be possible to characterize the computation in such a way that it can be understood and machine-checked

by the skeptical reader.

This suggests a judicious weakening of the conventional notion of surveyability. A proof may be said

to be computationally surveyable if its only departure from that notion is its dependence on unproved

assertions that satisfy the following criteria:

(1) The assertion pertains to a function for which a clear constructive definition has been provided,

and merely specifies the value of that function corresponding to a concrete set of arguments.

(2) The computation of this value has been performed mechanically by the author of the proof in a

reasonably short time.

(3) A competent reader could readily code the function in the programming language of his choice

and verify the asserted result on his own computing platform.

Such a proof, though still objectionable to those who insist on strict surveyability, can convey a compre-

hensive understanding of a theorem and is susceptible to a process of social review, thus oppugning a

commonly stated basis for the objection.

Neither of the treatments of the elliptic curve group properties cited above attempts such a proof,

perhaps because the supporting tool or its application to the problem at hand is too complicated to admit

a concise specification. Thus, Friedl simply attributes unproved results to CoCoA, while Théry’s claims

depend on an undisclosed “tactic” that has reportedly been implemented in Coq.

An integrated computationally surveyable proof of a result of this sort, which combines subtle math-

ematical analysis with intensive computation, is best carried out with the support of an interactive prover

based on an efficient executable logic. We shall present such a proof of this theorem that has been formal-

ized and mechanically checked in its entirety with ACL2. The computational results for which we rely

solely on ACL2 for verification, as opposed to proof checking, (all of which are in Section 7) are labeled

as Computations, and are thus clearly distinguished from other steps in the proof, which are listed as

Lemmas. All computations are performed on S-expressions and are most naturally performed in LISP,

but can be readily implemented in any language that provides linked lists. Moreover, our exposition is

confined to conventional mathematical terminology and notation, with no reference to the ACL2 logic.

Our proof benefits significantly from the two earlier efforts, both in its overall approach and through

its appropriation of specific lemmas. In particular, we follow [11] in the representation of polynomials

in sparse Horner normal form, using a normalization procedure adapted from [5]. Furthermore, our

Lemmas 2.1, 2.2, and 7.7 are variants of results found in [11] (two of which are inherited from [4]).

The supporting materials for this paper include several subdirectories of books/projects in the

ACL2 repository. The main script resides in curve25519. The basis of Curve25519 is the primality of

℘= 2255 −19, which is proved in quadratic-reciprocity by Pratt’s method [7]and explained in [9].

Fermat’s Theorem (a℘−1 mod ℘= 1 when a is not divisible by ℘), which allows the inversion operator

in the field F℘ to be defined as a−1 = a℘−2 mod ℘, is also formalized in quadratic-reciprocity.

32 Group Properties of an Elliptic Curve

Our formalization of sparse Horner normal forms is in the subdirectory shnf. Following [5], we

define an efficiently computable normalization of polynomial terms and an evaluation function on normal

forms, and prove equality between the value of a polynomial and that of its representation, for all variable

assignments. Thus, the equivalence of two polynomials we may be established by computing their

normalizations and observing that they coincide.

Of course, the utility of this method rests on the property of completeness: equivalent polynomials

always produce the same representation. According to the authors of the Coq proof, which does not

address this property, it cannot even be stated within their formal framework. Our development includes

a constructive proof of this result that we have formalized in ACL2, based on a function that computes,

for a given pair of two polynomials, a list of variable assignments for which the values of the polynomials

differ, whenever such a list exists. This result is not required for our present purpose, but is documented

elsewhere [8].

The distinguishing features of our proof that enable the objective of computational surveyability are

(1) a specialized rewriting procedure that reduces the normal form of a polynomial according to the

curve equation (Definition 5.5), and (2) an encoding of group elements as integer triples, which facil-

itates symbolic computation of the group operation (Definition 6.3). Both of these functions require

automated computation but admit concise specifications and correctness proofs. Furthermore, a modest

improvement in efficiency over the more general Coq proof tactic is suggested by a comparison of ex-

ecution times of the three computational results of [11] (9.2, 3.9, and 18.8 seconds for spec3_assoc,

spec2_assoc, and spec3_assoc, respectively) and our versions of the same computations (3.78, 0.36,

and 3.8 seconds for Computations 7, 8, and 9). We exploit this facility by performing several more in-

tensive computations, thereby eliminating much of Théry’s analysis, which he characterizes as “really

tedious”. In particular, Computation 10, which is proved in 26.2 seconds, disposes of a critical case of

associativity. It is also worth noting that if the polynomial involved in this result were expanded into

a sum of monomials, as might be done in a direct hand proof based on “standard computations”, the

number of terms would exceed 1025. Clearly, the reader who completes such a proof “in a few days” is

exceptionally good with figures.

2 Curve25519

Let ℘= 2255 − 19 and A = 486662. The primality of ℘ is proved in [9]. The field of order ℘ is the

set F℘ = {0,1,2, . . . ,℘−1} with the operations of addition and multiplication modulo ℘. Every n ∈ Z

naturally corresponds to the field element n mod ℘, which we denote as n̄. The field operations will be

denoted by the usual symbols: if x ∈ F℘, y ∈ F℘, and k ∈ N, then “x+ y”, “x− y”, “−x”, “xy”, or “xk”

may refer to an operation in either F℘ or Z, depending on context, whereas “x/y” will only denote an

operation in F℘.

Definition 2.1 EC = {(x,y) ∈ F℘×F℘ | y2 = x3 +Ax2 + x}∪{∞}.

Our goal is to show that EC is an abelian group under the following operation:

Definition 2.2 Let P ∈ EC and Q ∈ EC.

(1) P⊕∞ = ∞⊕P = P.

(2) If P = (x,y), then P⊕ (x,−y) = ∞.

(3) If P = (x1,y1), Q = (x2,y2) 6= (x1,−y1), and λ =

{

y2−y1

x2−x1
if x1 6= x2

3x2
1+2Ax1+1

2y1
if x1 = x2,

then P⊕Q = (x,y),

where x = λ 2 −A− x1− x2 and y = λ (x1 − x)− y1.

D.M. Russinoff 33

Clearly, ∞ is the identity element, the inverse of P = (x,y) is ⊖P = (x,−y), and according to Corollary 1

of [9], the origin O = (0,0) is the only element of order 2.

Remark. If we consider Definition 2.1 as an equation over R instead of F℘, then Definition 2.2 admits a

simple geometric interpretation. Except when Q =⊖P, the line connecting points P and Q on the curve

(or the tangent line at P, in case P = Q) intersects the curve at another point, R. If we were to define the

operation as P⊕Q = ⊖R, then analytic geometry would yield the formula in the definition. If Q = ⊖P,

the third point of intersection is taken to be ∞.

In the sequel, we shall assume that P0 = (x0,y0), P1 = (x1,y1), and P2 = (x2,y2) are fixed elements of

EC that are distinct from ∞ (but not necessarily from one another), in order to obviate repetition of such

hypotheses. Any result pertaining to these points may be generalized by replacing them with arbitrary

finite points of EC. We begin with two simple consequences of Definition 2.2.

Lemma 2.1 P0 ⊕P1 6= P0.

PROOF: Suppose P0 ⊕P1 = P0. Equating y-coordinates, we have y0 = λ (x0 − x0)− y0 =−y0, which

implies 2y0 = 0 and hence (since F℘ is of odd characteristic ℘) y0 = 0, which implies x0 = 0. But x1

cannot be 0, as this would imply P0 = O⊕O = ∞. Thus, the equation x0 = λ 2 −A− x0− x1 reduces to

y2
1

x2
1

= λ 2 = x1 +A,

which implies x3
1 +Ax2

1 + x1 = y2
1 = x3

1 +Ax2
1, contradicting x1 6= 0. ✷

Lemma 2.2 If P0 ⊕P1 = P0 ⊕ (⊖P1), then either P0 = O or P1 = O.

PROOF: If P0 =⊖P1, then

P0 ⊕P0 = P0 ⊕ (⊖P1) = P0 ⊕P1 =⊖P1 ⊕P1 = ∞,

which implies P0 = O. Similarly, if P0 = P1, then

P0 ⊕P0 = P0 ⊕P1 = P0 ⊕ (⊖P1) = P0 ⊕ (⊖P0) = ∞.

Therefore, we may assume x0 6= x1. Equating the x-coordinates of P0 ⊕P1 and P0 ⊕ (⊖P1), we have

(

y1 − y0

x1 − x0

)2

− x0 − x1 =

(

y1 + y0

x1 − x0

)2

− x0 − x1,

which implies 4y0y1 = 0, and hence either y0 = 0 or y1 = 0. ✷

3 Encoding Points on the Curve as Integer Triples

Our scheme for symbolic computation of the group operation is based on a mapping from Z
3 to F

2
℘:

Definition 3.1 If P = (m,n,z) ∈ Z
3, where z is not divisible by ℘, then

decode(P) =

(

m̄

z̄2
,

n̄

z̄3

)

∈ F
2
℘

and P is said to be an encoding of decode(P).

34 Group Properties of an Elliptic Curve

Note that every P = (x,y) ∈ F
2
℘ admits the canonical encoding P = (x,y,1).

The motivation for this definition is that an encoding of P⊕Q can often be readily derived from

encodings of P and Q in certain cases of interest. We define a partial addition operation on Z
3 corre-

sponding to Definition 2.2:

Definition 3.2 Given P ∈ Z
3 and Q ∈ Z

3, P ⊕Q ∈ Z
3 is defined in two cases:

(1) If P = Q = (m,n,z), then P⊕Q = (m′,n′,z′), where

z′ = zdbl(P) = 2nz,

w′ = wdbl(P) = 3m2 +2Amz2 + z4,

m′ = mdbl(P) = w′2 −4n2(Az2 +2m),

n′ = ndbl(P) = w′(4mn2 −m′)−8n4.

(2) If P = (x,y,1) ∈ Z
3 and Q = (m,n,z) 6= P , then P ⊕Q = (m′,n′,z′), where

z′ = zsum(P,Q) = z(z2x−m),

m′ = msum(P,Q) =
(

z3y−n
)2

−
(

z2(A+ x)+m
)(

z2x−m
)2

n′ = nsum(P,Q) =
(

z3y−n
)(

z′2x−m′
)

− z′3y.

Lemma 3.1 Let P= decode(P)∈EC and Q= decode(Q)∈EC, where P⊕Q is defined and if P=Q,

then P 6= O and P = Q. Then decode(P ⊕Q) = P⊕Q.

PROOF: The arithmetic operations below are to be understood as operations in F℘ on the field ele-

ments corresponding to the integers involved.

We first consider the case P = Q = (m,n,z). Let

λ =
3
(

m
z2

)2

+2A
(

m
z2

)

+1

2
(

n
z3

) =
3m2 +2Amz2 + z4

2nz
=

w′

z′
.

Then P⊕P = (x,y), where

x = λ 2 −A−2

(

m

z2

)

=
w′2

z′2
−

Az2 +2m

z2
=

w′2

z′2
−

4n2(Az2 +2m)

z′2
=

m′

z′2

and

y = λ

(

m

z2
− x

)

−
n

z3
=

w′

z′
·

4mn2 −m′

z′2
−

8n4

z′3
=

w′(4mn2 −m′)−8n4

z′3
=

n′

z′3
.

Thus, decode(P ⊕P) = decode(m′,n′,z′) = (x,y) = P⊕P.

In the remaining case, we have P = (m,n,z) and Q = (x,y,1). Let

λ =
y− n

z3

x− m
z2

=
z3y−n

z(z2x−m)
=

z3y−n

z′
,

Then P⊕Q = (x′,y′), where

x′ = λ 2 −A− x−

(

m

z2

)

=
(z3y− x)2

z′2
−

z2(A+ x)+m

z2

=
(z3y− x)2

z′2
−

(

z2(A+ x)+m
)(

z2x−m
)2

z′2
=

m′

z′2

D.M. Russinoff 35

and

y′ = λ (x− x′)− y =
z3y−n

z′
·

xz′2 −m′

z′2
−

z′3y

z′3
=

n′

z′3
.

Thus, decode(P ⊕Q) = decode(m′,n′,z′) = (x′,y′) = P⊕Q. ✷

4 Polynomial Terms and Sparse Horner Normal Form

In this section, we describe our formalization of sparse Horner forms as S-expressions. For this purpose,

an S-expression is an integer, a symbol, or an ordered list s = (s0 s1 . . . sn) of S-expressions. In the last

case, head(s) = s0, and for k ∈ N, we define s(k) = (sk . . . sn). The set of all lists whose members are

confined to a set S is L (S).
Under the usual ACL2 encoding of multi-variable polynomials, a polynomial term over a list V of

variable symbols is an S-expression constructed from integers and symbols in V using the symbols +,

-, *, and EXPT. The function evalp evaluates a term according to an alist that associates variables with

integer values in the natural way. For example, if V = (X Y Z) and A = ((X 2) (Y 3) (Z 0)), then

τ = (* X (EXPT (+ Y Z) 3)) is a term over V and evalp(τ ,A) = 2 · (3+ 0)3 = 54. The set of all

polynomial terms over V is denoted T (V).
We shall represent polynomial terms as objects of the following type:

Definition 4.1 A sparse Horner form (SHF) is any of the following:

(a) An integer;

(b) A list (POP i p), where i ∈ N and p is a SHF

(c) A list (POW i p q), where i ∈ N and p and q are SHFs.

A SHF is normal if its components are normal and it is not either of the following:

(a) (POP i p), where i = 0 or p ∈ Z or p =(POP j q);

(b) (POW i p q), where i = 0 or p =(POW j r 0).

H denotes the set of all normal SHFs, or SHNFs.

The evaluation of a SHF with respect to a list of integers is defined as follows:

Definition 4.2 Let h be a SHF and let N ∈ L (Z).

(a) If h ∈ Z, then evalh(h,N) = h.

(b) If h = (POP i p), then then evalh(h,N) = evalh(p,N(i)).

(c) If h = (POW i p q) and head(N) = n, then evalh(h,N) = nievalh(p,N)+ evalh(q,N(1)).

(d) If h = (POW i p q) and N =(), then evalh(h,N) = 0.

Our objective is to define, for a given variable list V =(v0 . . .vk), a mapping norm : T (V) → H

such that if N = (n0 . . .nk) and A =((v0 n0). . .(vk nk)), then

evalh(norm(x,V),N) = evalp(x,A).

Thus, if two polynomials produce the same normal form, then they are equivalent.

A possible top-down approach to the definition of norm(f ,V) is as follows:

36 Group Properties of an Elliptic Curve

(1) If f is an integer constant, then norm(f ,V) = f .

(2) Suppose v0 occurs in f . Find polynomials g and h such that f = vi
0 ·g+h, g is not divisible by v0,

and v0 does not occur in h. If p = norm(g,V) and q = norm(h,V (1)), then

norm(f ,V) = (POW i p q).

(3) Suppose v0 does not occur in f . Let vi be the first variable in V that does occur in f . If p =
norm(f ,V (i)), then

norm(f ,V) = (POP i p).

For example, consider the polynomial 4x4y2 + 3x3 + 2z4 + 5 with variable ordering (x y z). Rewriting

the polynomial as

x3(4xy2 +3)+ (2z4 +5),

we find that the normalization is (POW 3 p q), where p = norm(4xy2 +3,(x y z)) and q = norm(2z4 +
5,(y z)). Continuing recursively, we arrive at the final result:

(POW 3 (POW 1 (POP 1 (POW 2 4 0)) 3)

(POP 1 (POW 4 2 5))).

It may be instructive to check that the value of this SHF for the list of values (1 2 3), for example, and

the value of the represented polynomial for the corresponding alist, are both 207.

It is not difficult to see that a SHF generated by this procedure is indeed normal. Unfortunately, this

approach is impractical because of the general difficulty of constructing the polynomials g and h in Case

(2). Our preferred definition will provide a more efficient bottom-up procedure. We begin with the two

basic normalizing functions pop and pow:

Definition 4.3 Let i ∈ N and p ∈ H .

(a) If i = 0 or p ∈ Z, then pop(i, p) = p.

(b) If p = (POP j q), then pop(i, p) = (POP i+ j q).

(c) Otherwise, pop(i, p) = (POP i p).

Definition 4.4 Let i ∈ N−{0}, p ∈ H , and q ∈ H .

(a) If p = 0, then pow(i, p,q) = pop(1,q).

(b) If p = (POW j r 0), then pow(i, p,q) = (POW i+ j r q).

(c) Otherwise, pow(i, p,q) = (POW i p q).

The following properties of these functions are immediate consequences of the definitions:

Lemma 4.1 Let i ∈ N, p ∈ H , q ∈ H , and N ∈ L (Z).

(a) pop(i, p) ∈ H and evalh(pop(i, p),N) = evalh((POP i p),N).

(b) If i 6= 0, then pow(i, p,q) ∈ H and evalh(pow(i, p,q),N) = evalh((POW i p q),N).

We also define a ring structure on H , Once we have computed the SHNFs for polynomials x and y,

the ring operations “⊕” and “⊗” compute those for (+ x y) and (* x y).

Definition 4.5 Let x ∈ H and x ∈ H .

(1) If x ∈ Z, then

D.M. Russinoff 37

(a) y ∈ Z⇒ x⊕ y = x+ y and x⊗ y = xy.

(b) y = (POP i p)⇒ x⊕ y = (POP i x⊕ p) and x⊗ y = pop(i,x⊗ p).

(c) y = (POW i p q)⇒ x⊕ y = (POW i p x⊕q) and x⊗ y = pow(i,x⊗ p,x⊗q).

(2) If y ∈ Z, then x⊕ y = y⊕ x and x⊗ y = y⊗ x.

(3) If x = (POP i p) and y = (POP j q), then

(a) i = j ⇒ x⊕ y = pop(i, p⊕q) and x⊗ y = pop(i, p⊗q).

(b) i > j ⇒ x⊕ y = pop(j,(POP i− j p)⊕q) and x⊗ y = pop(j,(POP i− j p)⊗q).

(c) i < j ⇒ x⊕ y = pop(i,(POP j− i q)⊕ p) and x⊗ y = pop(i,(POP j− i q)⊗ p).

(4) If x = (POP i p) and y = (POW j q r), then

(a) i = 1 ⇒ x⊕ y = (POW j q r⊕ p) and x⊗ y = (POW j x⊗q p⊗ r).

(b) i> 1⇒ x⊕y= (POW j q r⊕(POP i−1 p)) and x⊗y= (POW j x⊗q (POP i−1 p)⊗r).

(5) If y = (POP i p) and y = (POW j q r), then x⊕ y = y⊕ x and x⊗ y = y⊗ x.

(6) If x = (POW i p q) and y = (POW j r s), then

(a) i = j ⇒ x⊕ y = pow(i, p⊕ r,q⊕ s).

(b) i > j ⇒ x⊕ y = pow(j,(POW i− j p 0)⊕ r,q⊕ s)

(c) i < j ⇒ x⊕ y = pow(i,(POW j− i q 0)⊕ p,s⊕q).

(d) x⊗ y = (pow(i+ j, p⊗ r,q⊗ s)⊕pow(i, p⊗pop(1,s),0))⊕pow(i,r⊗pop(1,q),0).

The definitions of negation and exponentiation are straightforward:

Definition 4.6 Let x ∈ H .

(1) If x ∈ Z, then ⊖x =−x.

(2) If x = (POP i p), then ⊖x = (POP i ⊖ p).

(3) If x = (POW i p q), then ⊖x = (POW i ⊖ p ⊖q).

Definition 4.7 If x ∈ H and k ∈N, then

xk =

{

1 if k = 0

x⊗ xk−1 if k > 0.

The following properties are easily proved by induction:

Lemma 4.2 Let x ∈ H , y ∈ H , N ∈ L (Z), and k ∈N.

(a) x⊕ y ∈ H and evalh(x⊕ y,N) = evalh(x,N)+ evalh(y,N).

(b) x⊗ y ∈ H and evalh(x⊗ y,N) = evalh(x,N) · evalh(y,N).

(c) ⊖x ∈ H and evalh(⊖x,N) =−evalh(x,N).

(d) xk ∈ H and evalh(xk,N) = evalh(x,N)k.

We can now define the normalization procedure:

Definition 4.8 If x ∈ T (V), where V = (v0 . . .vk−1) is a list of distinct symbols, then

(1) x ∈ Z⇒ norm(x,V) = x.

(2) x = vi, 0 ≤ i < k ⇒ norm(x,V) = pop(i,(POW 1 1 0)).

38 Group Properties of an Elliptic Curve

(3) x = (- y)⇒ norm(x,V) =⊖norm(y,V).

(4) x = (+ y z)⇒ norm(x,V) = norm(y,V)⊕norm(z,V).

(5) x = (- y z)⇒ norm(x,V) = norm(y,V)⊕ (⊖norm(z,V)).

(6) x = (* y z)⇒ norm(x,V) = norm(y,V)⊗norm(z,V).

(7) x = (EXPT y k)⇒ norm(x,V) = norm(y,V)k.

The reader may wish to check that the SHNF for the polynomial −z+ x3(z+ x−3y) with respect to

the variable list (x y z) is once again

(POW 3 (POW 1 (POP 1 (POW 2 4 0)) 3)

(POP 1 (POW 4 2 5))).

Lemma 4.3 Let f ∈ T (V), where V = (v0 . . .vk−1) is a list of distinct symbols. Let N = (n0 . . .nℓ−1)

be a list of integers with ℓ≥ k and

A = ((v0 n0) . . .(vk−1 nk−1)),

Then norm(f ,V) ∈ H and

evalh(norm(f ,V),N) = evalp(f ,A).

PROOF: The case f = vi follows from Definition 4.2 and Lemma 4.1; the other cases follow from

Definition 4.2, induction, and Lemma 4.2. ✷

5 Polynomial Reduction

We shall focus on the case of a list of variables corresponding to the coordinates of the points P0, P1, and

P2, as characterized in Section 2. We define the following lists:

Definition 5.1 V =(Y0 Y1 Y2 X0 X1 X2), N =(y0 y1 y2 x0 x1 x2), and

A =((Y0 y0) (Y1 y1) (Y2 y2) (X0 x0) (X1 x1) (X2 x2))

We abbreviate T (V) as T , and for τ ∈ T we abbreviate evalp(τ ,A) as τ̂ .

The ordering of the variable list V is designed to maximize the efficiency of the rewriting procedure

defined below. This procedure operates on a SHF that represents a polynomial with respect to V , which

is effectively reduced, using the curve equation as a rewrite rule, to a polynomial that (a) has the same

value (modulo ℘) as the given polynomial under the variable assignments of A and (b) is at most linear

in each of the variables Yi.

The core of the rewriter is the function split, which reduces and splits a polynomial term τ into a

sum of two polynomials, of which one is independent of a given Y j and the other is linear in Y j. More

precisely, if h = norm(τ ,V (k)) and 0 ≤ k ≤ j ≤ 3, then split(h, j,k) computes a pair of SHNFs that

represent these polynomials.

The following SHNF is used in the reduction:

Definition 5.2 Θ =(POP 3 (POW 1 (POW 1 (POW 1 1 A) 1) 0)).

Lemma 5.1 If j ∈ {0,1,2}, then evalh(Θ,N (j)) = x3
j +Ax2

j + x j ≡ y2
j (mod ℘).

PROOF: This may be derived by expanding the definition of evalh. ✷

D.M. Russinoff 39

Definition 5.3 Let h ∈ H , j ∈ {0,1,2}, and k ∈ N.

(1) If h ∈ Z or j < k, then split(h, j,k) = (h,0).

(2) If j ≥ k, h =(POP i p), and (p0, p1) = split(p, j,k+ i), then

split(h, j,k) = (pop(i, p0),pop(i, p1)).

(3) Let h =(POW i p q), (p0, p1) = split(p, j,k), and (q0,q1) = split(q, j,k+1).

(a) If j > k, then

split(h, j,k) = (pow(i, p0,q0),pow(i, p1,q1)) ;

(b) If j = k and i is even, then

split(h, j,k) =
(

(Θ
i
2 ⊗ p0)⊕pop(1,q0),(Θ

i
2 ⊗ p1)⊕pop(1,q1)

)

;

(c) If j = k and i is odd, then

split(h, j,k) =
(

(Θ
i+1

2 ⊗ p1)⊕pop(1,q0),(Θ
i−1

2 ⊗ p0)⊕pop(1,q1)
)

.

Lemma 5.2 Let (h0,h1) = split(h, j,k), where h ∈ H , j ∈ {0,1,2}, and k ∈ N. Then evalh(h,N (k))≡
evalh(h0,N

(k))+ y j · evalh(h1,N
(k)) (mod ℘).

PROOF: We may assume that j ≥ k; otherwise the claim is trivial. The proof is by induction on the

structure of h. The case h =(POP i p) is straightforward:

evalh(h,N (k)) = evalh(p,N (k+i))

≡ evalh(p0,N
(k+i))+ y j · evalh(p1,N

(k+i))

= evalh(pop(i, p0),N
(k))+ y j · evalh(pop(i, p1),N

(k))

= evalh(h0,N
(k))+ y j · evalh(h1,N

(k)).

Suppose h =(POW i p q). By the definition of evalh,

evalh(h,N (k))

= yi
k · evalh(p,N (k))+ evalh(q,N (k+1))

≡ yi
k

(

evalh(p0,N
(k))+ y j · evalh(p1,N

(k))
)

+
(

evalh(q0,N
(k+1))+ y j · evalh(q1,N

(k+1))
)

=
(

yi
kevalh(p0,N

(k))+ evalh(q0,N
(k+1))

)

+ y j ·
(

yi
kevalh(p1,N

(k))+ evalh(q1,N
(k+1))

)

.

If j > k, then this may be written as

evalh((POW i p0 q0),N
(k))+ y j · evalh((POW i p1 q1),N

(k))

= evalh(pow(i, p0,q0),N
(k))+ y j · evalh(pow(i, p1,q1),N

(k))

= evalh(h0,N
(k))+ y j · evalh(h1,N

(k)).

40 Group Properties of an Elliptic Curve

We may assume, therefore, that j = k. If i is even, then

yi
kevalh(p0,N

(k))+ evalh(q0,N
(k+1))

= (y2
k)

i
2 evalh(p0,N

(k))+ evalh(q0,N
(k+1))

≡ evalh(Θ,N (k))
i
2 evalh(p0,N

(k))+ evalh((POP 1 q0),N
(k))

= evalh(h0,N
(k)),

and similarly,

y j

(

yi
kevalh(p1,N

(k))+ evalh(q1,N
(k+1))

)

= y j · evalh(h1,N
(k)).

if i is odd, then we may rearrange the above expression for evalh(h,N (k)) as

(

(y2
j)

i+1
2 evalh(p1,N

(k))+ evalh(q0,N
(k+1))

)

+ y j

(

(y2
j)

i−1
2 evalh(p0,N

(k))+ evalh(q1,N
(k+1))

)

,

which similarly reduces to evalh(h0,N
(k))+ y j · evalh(h1,N

(k)). ✷

Definition 5.4 If h ∈ H , j ∈ {0,1,2}, and (h0,h1) = split(h, j,0), then

rewrite(h, j) = h0 ⊕ (h1 ⊗norm(Y j,V)).

Lemma 5.3 If h ∈ H , j ∈ {0,1,2}, and r = rewrite(h, j), then r̂ ≡ ĥ (mod ℘).

PROOF: We instantiate Lemma 5.2 with k = 0 and invoke Lemma 4.2. ✷

Definition 5.5 If σ ∈ T , then

reduce(σ) = rewrite(rewrite(rewrite(norm(σ ,V),0),1),2).

Lemma 5.4 If reduce(σ) = reduce(τ), then σ̂ ≡ τ̂ (mod ℘).

PROOF: This is a consequence of Lemmas 5.3 and 4.3). ✷

6 Encoding Points on the Curve as Term Triples

The evaluation of terms induces a mapping from T 3 to F
2
℘:

Definition 6.1 For Π = (µ ,ν ,ζ) ∈ T 3, Π̂ = (µ̂ , ν̂ , ζ̂) and if ζ̂ is not divisible by ℘, then decode(Π) =
decode(Π̂).

Clearly, under the following definitions, decode(Ω) = O and decode(Πi) = Pi.

Definition 6.2 Ω = (0,0,1) and for i ∈ {0,1,2}, Πi = (Xi,Yi,1).

Definition 3.2 suggests a partial addition on T 3 corresponding to the group operation on EC. This in

combination with normalization (Definition 4.8) and reduction (Definition 5.5) will provide a practical

means of establishing equivalence between expressions constructed from the above points by nested

applications of ⊕, while avoiding the intractable task of explicitly computing those expressions.

D.M. Russinoff 41

Definition 6.3 For Π ∈ T 3 and Λ ∈ T 3, Π⊕Λ ∈ T 3 is defined in the following cases:

(1) If Π = Λ = (µ ,ν ,ζ), then Π⊕Λ = (µ ′,ν ′,ζ ′), where

ζ ′= ζdbl(Π) = (* 2 (* ν ζ)),

ω = ωdbl(Π) = (+ (* 3 (EXPT µ 2))

(+ (* 2 (* A (* µ (EXPT ζ 2))))

(EXPT ζ 4))),

µ ′= µdbl(Π)
= (- (EXPT ω ′ 2)

(* 4 (* (EXPT ν 2) (+ (* A (EXPT ζ 2)) (* 2 µ)))),

ν ′ = νdbl(Π) = (- (* ω ′ (- (* 4 (* (EXPT ν 2))) µ ′))

(* 8 (EXPT ν 4))).

(2) If Π = (θ ,φ ,1) and Λ = (µ ,ν ,ζ) 6= Π, then Π⊕Λ = (µ ′,ν ′,ζ ′), where

ζ ′ = ζsum(Π,Λ) = (* ζ (- (* (EXPT ζ 2) θ) µ),

µ ′ = µsum(Π,Λ) = (- (EXPT (- (* (EXPT ζ 3) ν) 2)

(* (+ (* (EXPT ζ 2) (+ A θ)) µ)

(EXPT (- (* (EXPT ζ 2) θ) µ) 2))),

ν ′ = νsum(Π,Λ) = (- (* (- (* (EXPT ζ 3) φ) ν)

(- (* (EXPT ζ ′ 2) θ) µ ′))

(* (EXPT ζ 3) φ)).

Lemma 6.1 Let Π ∈ T 3 and Λ ∈ T 3 with decode(Π) = P ∈ EC, decode(Λ) = Q ∈ EC, and Π⊕Λ

defined. Assume that if Π = Λ, then P = Q 6= O, and otherwise P 6= Q. Then decode(Π⊕Λ) = P⊕Q.

PROOF: Let Γ = Π⊕Λ. Clearly, the hypothesis implies that Π̂⊕ Λ̂ is defined. In light of Lemma 3.1,

we need only show that Γ̂ = Π̂⊕ Λ̂.

We shall examine the case Π = Λ; the remaining case is similar. Let Π = (µ ,ν ,ζ), Λ = (µ ′,ν ′,ζ ′),
and

P = Π̂⊕ Λ̂ = (µ̂ , ν̂ , ζ̂) = (m,n,z).

According to Definition 6.3,

ζ ′ = (* 2 (* ν ζ))

and it is clear from the definition of evalp that

ζ̂ ′ = evalp(ζ ′,A) = 2 · evalp(ν ,A) · evalp(ζ ,A) = 2ν̂ ζ̂ = 2mn = zdbl(P).

It may similarly be shown that µ̂ = mdbl(P) and ν̂ = ndbl(P). Thus,

Γ̂ = (µ̂ ′, ν̂ ′, ζ̂ ′) = (zdbl(P),mdbl(P),ndbl(P)) = P ⊕P. ✷

We also define a negation operator, with the obvious property:

Definition 6.4 For Π = (µ ,ν ,ζ) ∈ T 3, ⊖Π = (µ ,(- ν),ζ).

42 Group Properties of an Elliptic Curve

Lemma 6.2 If Π ∈ T 3 and decode(Π) ∈ EC, then decode(⊖Π) =⊖P.

The next two lemmas, which combine the results of this section with those of Section 5, will be

critical in establishing the group axioms: Lemma 6.3 for closure and Lemma 6.4 for commutativity and

associativity.

Definition 6.5 Given Π = (µ ,ν ,ζ) ∈ T 3, let

τ = (- (EXPT ν 2)

(+ (EXPT µ 3)

(+ (* A (EXPT (* µ ζ) 2))

(* µ (EXPT ζ 4))))).

Then Π is an EC-encoding if reduce(τ) = 0.

Lemma 6.3 If Π is an EC-encoding and P = decode(Π), then P ∈ EC.

PROOF: Let Π = (µ ,ν ,ζ), Π̂ = (m,n,z), and P = (x,y) = decode(Π). Then

τ̂ = n2 − (m3 +A(mz)2 +mz4)

and

P =

(

m̄

z̄2
,

n̄

z̄3

)

.

By Lemma 5.4, τ̂ ≡ 0 (mod ℘), and therefore, in the field F℘,

n̄2 = m̄3 +A(m̄z̄)2 + m̄z̄4.

Dividing this equation by z̄6 yields

y2 =
n̄2

z̄6
=

m̄3

z̄6
+

Am̄2

z̄4
+

m̄

z̄2
= x3 +Ax2 + x. ✷

Definition 6.6 Given Π = (µ ,ν ,ζ) ∈ T 3 and Π′ = (µ ′,ν ′,ζ ′) ∈ T 3, let

σ =(* µ (EXPT ζ ′ 2)), σ ′ =(* µ ′ (EXPT ζ 2)),

τ =(* ν (EXPT ζ ′ 3)), τ ′ =(* ν (EXPT ζ 3)).

Then Π ∼ Π′ ⇔ reduce(σ) = reduce(σ ′) and reduce(τ) = reduce(τ ′).

Lemma 6.4 Let Π ∈ T 3 and Π′ ∈ T 3. If decode(Π) = P ∈ EC, decode(Π′) = P′ ∈ EC, and Π ∼ Π′,

then P = P′.

PROOF: Let Π = (µ ,ν ,ζ), Π′ = (µ ′,ν ′,ζ ′), Π̂ = (m,n,z), and Π̂′ = (m′,n′,z′). Then by Lemma 5.4,

mz′2 = µ̂ ζ̂ ′
2
= σ̂ ≡ σ̂ ′ = µ̂ ′ζ̂ 2 = m′z2 (mod ℘)

and

nz′3 = ν̂ ζ̂ ′
3
= τ̂ ≡ τ̂ ′ = ν̂ ′ζ̂ 3 = n′z3 (mod ℘).

Thus, in the field F℘,

P =

(

m̄

z̄2
,

n̄

z̄3

)

=

(

m̄′

z̄′
2
,

n̄′

z̄′
3

)

= P′. ✷

D.M. Russinoff 43

7 Abelian Group Axioms

It must be shown that if {P,Q,R} ⊂ EC, then P⊕Q = Q⊕P ∈ EC and (P⊕Q)⊕R = P⊕ (Q⊕R). We

may assume that the points are finite, since each of these properties is trivial otherwise, and without loss

of generality, we may confine our attention to the fixed points P0, P1, and P2.

Computations 1–11 below are computational results of evaluating the functions that are specified by

Definitions 5.5 (term reduction), 6.3 (addition of term triples), 6.4 (negation of a term triple), 6.5 (EC-

encoding recognizer), and 6.6 (equivalence of term triples). The lemmas of this section are derived from

these results using the corresponding Lemmas 5.4, 6.1, 6.2, 6.3, and 6.4.

Computation 1 Π0 ⊕Π0 and Π0 ⊕Π1 are EC-encodings.

Lemma 7.1 (Closure) P0 ⊕P1 ∈ EC.

PROOF: If P0 6= P1, then by Computation 1, Definition 6.2 and Lemmas 6.1,

P0 ⊕P1 = decode(Π0)⊕decode(Π1) = decode(Π0 ⊕Π1),

and by Lemma 6.3, P0 ⊕P1 ∈ EC. Similarly, P0 ⊕P0 ∈ EC. ✷

Computation 2 Π0 ⊕Π1 ∼ Π1 ⊕Π0.

Lemma 7.2 (Commutativity) P0 ⊕P1 = P1 ⊕P0.

PROOF: We may assume P0 6= P1. By Computation 2 and Lemmas 6.1 and 6.4,

P0 ⊕P1 = decode(Π0 ⊕Π1) = decode(Π1 ⊕Π0) = P1 ⊕P0. ✷

All remaining results pertain to associativity.

Computation 3 ⊖(Π0 ⊕Π0)∼ (⊖Π0)⊕ (⊖Π0).

Computation 4 ⊖(Π0 ⊕Π1)∼ (⊖Π0)⊕ (⊖Π1).

Lemma 7.3 ⊖(P0 ⊕P1) = (⊖P0)⊕ (⊖P1).

PROOF: This follows from Computations 3 and 4 and Lemmas 5.4, 6.1, 6.2, and 6.4. ✷

Computation 5 (⊖Π0)⊕ (Π0 ⊕Π0)∼ Π0.

Computation 6 (⊖Π0)⊕ (Π0 ⊕Π1)∼ Π1.

Lemma 7.4 If P0 ⊕P1 6=⊖P0, then (⊖P0)⊕ (P0⊕P1) = P1.

PROOF: This follows similarly from Computations 5 and 6. ✷

Computation 7 Π2 ⊕ (Π0 ⊕Π1)∼ Π1 ⊕ (Π0 ⊕Π2).

Computation 8 Π1 ⊕ (Π0 ⊕Π0)∼ Π0 ⊕ (Π0 ⊕Π1).

Lemma 7.5 If P0 ⊕P1 /∈ {P2,⊖P2} and P0 ⊕P2 /∈ {P1,⊖P1}, then

P2 ⊕ (P0 ⊕P1) = P1 ⊕ (P0 ⊕P2).

44 Group Properties of an Elliptic Curve

PROOF: The claim follows immediately from Computations 7 and 8 and Lemmas 5.4, 6.1, and 6.4

except in the cases P0 = ⊖P1, P0 = P1 = O, P0 =⊖P2, and P0 = P2 = O. We need only consider the first

two of these cases; the other two are similar. Moreover, since ⊖O = O, the second case is subsumed

by the first. Thus, we may assume P0 = ⊖P1. Now LHS (the left-hand side) is P2 and by Lemma 7.4,

RHS = (⊖P0)⊕ (P0 ⊕P2) = P2 = LHS. ✷

Computation 9 (Π0 ⊕Π0)⊕ (Π0 ⊕Π0)∼ Π0 ⊕ (Π0 ⊕ (Π0 ⊕Π0)).

Computation 10 (Π0 ⊕Π1)⊕ (Π0 ⊕Π1)∼ Π0 ⊕ (Π1 ⊕ (Π0 ⊕Π1)).

Lemma 7.6 If P0 ⊕P1 6= −(P0 ⊕P1), P0 ⊕P1 6= ⊖P1, and P1 ⊕ (P0 ⊕P1) /∈ {P0,⊖P0}, then (P0 ⊕P1)⊕
(P0 ⊕P1) = P0 ⊕ (P1 ⊕ (P0⊕P1)).

PROOF: The case P0 =⊖P1 is trivial and the case P1 = P0⊕P1 is precluded by Lemma 2.1. All other

cases are handled by Computations 9 and 10 and Lemmas 5.4, 6.1, and 6.4. ✷

Computation 11 Let Σ = Π0 ⊕Π1 = (µ ,ν ,ζ), Σ′ = Π0 ⊕Π0 = (µ ′,ν ′,ζ ′),

φ =(- (EXPT (+ (- µ (* X1 (EXPT ζ 2))) (* 2 (* Y1 Y2))) 2)

(EXPT (* 2 (* Y1 Y2)) 2)),

and

ψ =(* (- µ ′ (* X2 (EXPT ζ ′ 2))) (EXPT ζ 2)).

Then reduce(φ) = reduce(ψ).

Lemma 7.7 If P0 ⊕P1 =⊖P0, then P1 =⊖(P0 ⊕P0).

PROOF: First note that we may assume that P0 /∈ {P1,⊖P1}, for if P0 = P1, then

P1 =⊖(⊖P0) =⊖(P0 ⊕P1) =⊖(P0 ⊕P0),

and if P0 =⊖P1, then

⊖P0 = P0 ⊕P1 = (⊖P1)⊕P1 = ∞,

contradicting P0 6= ∞. Furthermore, if P0 = ⊖P0, then P0 ⊕P1 = P0, contradicting Lemma 2.1. Thus, we

have x0 6= x1 and y0 6= 0.

Retaining the notation of Computation 11, let

Σ̂ = (µ̂ , ν̂ , ζ̂) = (m,n,z)

and

Σ̂′ = (µ̂ ′, ν̂ ′, ζ̂ ′) = (m′,n′,z′).

It follows from the definition of evalp that

φ̂ = (m− x0z2 +2y0y1)
2 − (2y0y0)

2

and

ψ̂ = (m′− x1z′2)z2.

By Lemma 6.1,

decode(Σ) =

(

m̄

z̄2
,

n̄

z̄3

)

= P0 ⊕P1 =⊖P0 = (x0,−y0),

D.M. Russinoff 45

and hence m ≡ x0z2 (mod ℘), which implies φ̂ ≡ 0 (mod ℘).
By Computation 11 and Lemma 5.4, ψ̂ ≡ 0 (mod ℘), which implies m′ ≡ x1z′2 (mod ℘). Thus, by

Lemma 6.1,

P0 ⊕P0 = decode(Σ′) =

(

m̄′

z̄′
2
,

n̄′

z̄′
3

)

=

(

x1,
n̄′

z̄′
3

)

,

which implies P0 ⊕P0 ∈ {P1,⊖P1}. We need only consider the case P0 ⊕P0 = P1.

Suppose that P0 ⊕P0 = P1. Then P0 ⊕P0 6=⊖P0, and by Lemma 7.10,

P1 ⊕ (⊖P0) = (P0 ⊕P0)⊕ (⊖P0) = P0.

Thus,

P0 ⊕ (⊖P1) =⊖(⊖P0 ⊕P1) =⊖(P1 ⊕ (⊖P0)) =⊖P0 = P0 ⊕P1.

By Lemma 2.2, P1 = O, and hence P1 =⊖P1 =⊖(P0 ⊕P0). ✷

Lemma 7.8 If P0 ⊕P1 =⊖P2, then (P0 ⊕P1)⊕P2 = P0 ⊕ (P1 ⊕P2).

PROOF: LHS = ∞ and by Lemma 7.3,

RHS = P0 ⊕ (P1⊕ (⊖(P0 ⊕P1))) = P0 ⊕ (P1 ⊕ ((⊖P0)⊕ (⊖P1))).

Therefore, we must show that P1 ⊕ ((⊖P0)⊕ (⊖P1)) =⊖P0.

If (⊖P0)⊕(⊖P1) 6= P1, then this follows from Lemma 7.4. On the other hand, if (⊖P0)⊕(⊖P1) = P1,

then by Lemmas 7.7 and 7.3,

⊖P0 =⊖((⊖P1)⊕ (⊖P1)) = P1 ⊕P1 = P1 ⊕ ((⊖P0)⊕ (⊖P1)). ✷

Lemma 7.9 (P0 ⊕P0)⊕P1 = P0 ⊕ (P0 ⊕P1).

PROOF: By Lemma 7.8, we may assume P0⊕P1 6=⊖P0 and P0⊕P0 6=⊖P1. By Lemmas 2.1 and 7.5,

we may assume that P1 = P0 ⊕P1.

If P1 =⊖P0, then

LHS = P1 +P1 = (⊖P0)⊕ (⊖P0) =⊖(P0 ⊕P0) =⊖P1 = P0 = RHS.

But if P1 6=⊖P0, then the claim follows from Lemma 7.6. ✷

Two final computations are required for the case P1 = O and P2 = P0 ⊕P1:

Computation 12 (Π0 ⊕Ω)⊕ (Π0⊕Ω)∼ Π0 ⊕Π0.

Computation 13 Ω⊕ (Π0⊕Ω)∼ Π0.

Lemma 7.10 (P0 ⊕O)⊕ (P0⊕O) = P0 ⊕ (O⊕ (P0⊕O)).

PROOF: We may assume that P0 6= O. Since Lemma 2.1 implies P0 ⊕O 6= O, it follows from Com-

putation 13 that O⊕ (P0 ⊕O) = P0. Thus, the claim reduces to (P0 ⊕O)⊕ (P0 ⊕O) = P0 ⊕P0, which

follows from Computation 12. ✷

Lemma 7.11 (Associativity) (P0 ⊕P1)⊕P2 = P0 ⊕ (P1 ⊕P2).

PROOF: By Lemmas 7.6 and 7.8, we may assume P1 ⊕P2 6=⊖P0, and P2 = P0 ⊕P1. By Lemma 7.6,

we need only eliminate the cases P0 ⊕P1 =⊖P1 and P1 ⊕ (P0 ⊕P1) = P0.

If P2 = P0 ⊕P1 =⊖P1, then RHS = P0 and by Lemmas 7.3 and 7.7,

LHS = (P0 ⊕P1)⊕ (P0⊕P1) = (⊖P1)⊕ (⊖P1) =⊖(P1 ⊕P1) = P0 = RHS.

Finally, if P1 ⊕ (P0 ⊕P1) = P0, then Lemma 7.9 implies P0 = P0 ⊕ (P1 ⊕P1), Lemma 2.1 then implies

P1 = O, and the claim follows from Lemma 7.10. ✷

46 Group Properties of an Elliptic Curve

References

[1] Henk Barendregt & Erik Barendsen (2002): Autarchic Computations in Formal Proofs. Journal of Automated

Reasoning 28, pp. 321–336, doi:10.1023/A:1015761529444.

[2] Daniel J. Bernstein (2006): Curve25519: New Diffie-Hellman Speed Records. In: 9th International Confer-

ence on Theory and Practice of Public Key Cryptography, Springer, pp. 207–228, doi:10.1007/11745853 14.

[3] Daniel J. Bernstein & Tanja Lange (2011): A Complete Set of Addition Laws for Incomplete Edwards Curves.

Journal of Number Theory 131, pp. 858–872, doi:10.1016/j.jnt.2010.06.015.

[4] Stefan Friedl (1998): An Elementary Proof of the Group Law for Elliptic Curve.

[5] Benjamin Gregoire & Assia Mahboubi (2005): Proving Equalities in a Commutative Ring Done Right in

Coq. In: Proceedings of the 18th International Conference on Theorem Proving in Higher Order Logics,

Springer-Verlag, pp. 98–113, doi:10.1007/11541868 7.

[6] Henri Poincaré (1901): Sur les Propriétés Arithmetiques des Courbes Algébriques. Lournalde Mathématiques

Pures et Appliuées 7, pp. 121–233.

[7] Vaughn Pratt (1975): Every Prime Has a Succinct Certification. SIAM Journal on Computing 4,

doi:10.1137/0204018.

[8] David M. Russinoff: Polynomial Terms and Sparse Horner Normal Form. Available at

http://www.russinoff.com/papers/shnf.pdf.

[9] David M. Russinoff: Pratt Certification and the Primality of 2255 − 19. Available at

http://www.russinoff.com/papers/pratt.pdf.

[10] Joseph H. Silverman & John T. Tate (2015): Rational Points on Elliptic Curves. Springer-Verlag,

doi:10.1007/978-3-319-18588-0.

[11] Laurent Théry (2007): Proving the Group Law for Elliptic Curves Formally. Technical Report RT-0330,

Inria.

[12] Thomas Tymoczko (1998): Computers and Mathematical Practice: A Case Study. Princeton University

Press.

http://dx.doi.org/10.1023/A:1015761529444
http://dx.doi.org/10.1007/11745853_14
http://dx.doi.org/10.1016/j.jnt.2010.06.015
http://dx.doi.org/10.1007/11541868_7
http://dx.doi.org/10.1137/0204018
http://www.russinoff.com/papers/shnf.pdf
http://www.russinoff.com/papers/pratt.pdf
http://dx.doi.org/10.1007/978-3-319-18588-0

	1 Introduction
	2 Curve25519
	3 Encoding Points on the Curve as Integer Triples
	4 Polynomial Terms and Sparse Horner Normal Form
	5 Polynomial Reduction
	6 Encoding Points on the Curve as Term Triples
	7 Abelian Group Axioms

