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We build upon our recently introduced concept of an update structure to show that it is a general-
isation of very-well-behaved lenses, that is, there is a bijection between a strict subset of update
structures and vwb lenses in cartesian categories. We show that update structures are also suf-
ficiently general to capture quantum observables, pinpointing the additional assumptions required
to make the two coincide. In doing so, we shift the focus from special commutative †-Frobenius
algebras to interacting (co)magma (co)module pairs, showing that the algebraic properties of the
(co)multiplication arise from the module-comodule interaction, rather than direct assumptions about
the magma-comagma pair. We then begin to investigate the zoo of possible update structures, intro-
ducing the notions of classical security-flagged databases, and databases of quantum systems. This
work is of foundational interest as update structures place previously distinct areas of research in a
general class of operationally motivated structures, we expect the taming of this class to illuminate
novel relationships between separately studied topics in computer science, physics and mathematics.

1 Introduction

Modelling meaning updating within natural language processing is an ongoing foundational problem.
Inspired by an operational interpretation, we recently introduced the concept of an update structure
[13] as a candidate for modelling meaning updating in monoidal categories, with the intention of pos-
sible applications within DisCoCat [3, 7, 5]. At its core, an update structure is a magma-module and
comagma-comodule, with axioms adopted to govern their interactions in accordance with some desired
operational intuition.

Particular cases of module-comodule pairs have been considered elsewhere; they make an appearance
in both categorical quantum mechanics where they have been shown to capture quantum observables and
measurements [6, 14] and in work on lenses [2, 9] in relation to the view-update problem. Additionally,
the connections between monads and modules (algebras over a monad) are well-known with studies into
monads in dagger categories [15] allowing for applications in the monadic dynamics framework [11]
where modules can describe the evolution of quantum systems under the Schrödinger equation [10, 12].

In this paper we offer a unifying perspective of these fields from the vantage point of update struc-
tures. To this end, the purpose of the remainder of this article is twofold: to pinpoint precisely when
lenses and update structures coincide, and to demonstrate that quantum measurements can be used to
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2 The Safari of Update Structures

define update structures. For the former, we demonstrate that update structures are more general than
vwb lenses, capturing both demolition and non-demolition viewing (Get) processes. For the latter, we
demonstrate both that the application of decoherence to any update structure will produce a new up-
date structure on classical objects, and that to characterise quantum observables it is sufficient to look at
how the weak module-comodule interact without underlying assumptions on the magma-comagma pair1.
Thus the focus is shifted from demands on both how the module and comodule interact and the algebraic
structure of the (co)magma, to demands placed purely on the interaction between module and comodule.
This approach places quantum observables and vwb lenses within a zoo of update structures with many
other enclosures left to explore, examples of which we give in the last section.

1.1 Introduction to Update Structures

We suppose that in a monoidal category, we may encode ‘states’ of objects via morphisms into that
object from the tensor unit. Given a pair of objects designated ‘system’ and ‘property (of the system)’, an
update structure is a tuple of morphisms (↑, ,∼, ) which come with four axioms chosen to force the
morphisms to behave as if they are update, read-out, pre-processing, and copying procedures respectively
on the system and property. We borrow the language of categorical lenses throughout, as it reflects well
on the modelling intentions of these operations. We recall some definitions from [13].

Definition 1 ((Strong) Update Structure). An update structure (↑, ,∼, ) in a monoidal category C
consists of:

• An object S, which we refer to as a system

• An object p, which we refer to as a property, which has:

– A magma structure ∼: p⊗ p→ p

– A comagma structure : p→ p⊗ p

• A Put operation ↑ : S⊗ p→ S

• A Get operation : S→ S⊗ p

Which satisfy the following equations:

PutPut GetGet

↑

↑
=

∼

↑

S p p

S

S p p

S

=

S

S p p S p p

S

(1)

1This is contrary to the usual approach where one typically begins with a module-comodule over a †-Frobenius structure as
a starting assumption.
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making ↑ a magma module and a comagma module. Additionally we require:

PutGet GetPut

↑
=

↑

S p

S p

S p

S p

↑
=

S S

S

p (2)

These four equations are operationally well-chosen with the intent of capturing what it means to be
an “update”. The PutPut rule says updating twice ought to be the same as performing some operation on
the properties and then updating once with the new combined property. GetGet is the converse of this;
retrieving a property twice should be the same as retrieving once and then performing some operation
(e.g. copying) on the retrieved data. PutGet captures the notion that updating and then retrieving ought
to be the same as copying, then updating with one of the copies. Finally GetPut is the notion that looking
and then putting back ought to leave the system invariant.

The first two equations satisfied by update structures are the requirements that (↑,∼) and ( , )
are a “weak” module-comodule pair, that is a pair of an action and coaction on a magma-comagma,
without the stricter underlying assumption of a monoid-comonoid pair2. The corresponding operational
intuition is that the magma handles the potential modification that may occur to the property stored in the
system when the system is updated in succession, and respectively the comagma handles modifications
to the property from successive read-outs. For instance, in modelling a faulty memory system, successive
property updates may not fully overwrite the previous property of the system, and successive read-outs
may corrupt the currently stored property.

The remaining two axioms are operational notions which constrain how the update and read-out
procedures should interact. Our initial intention was to model processes that faithfully recall stored
properties without requiring the update process to behave as an overwrite. So, taking the comagma to
be the copy-process on the property, the detailed prose of the PutGet axiom is: “Updating with a prop-
erty and then reading-out the system is observationally equivalent to copying the property, updating the
system with one copy and observing the other.” The GetPut axiom reads: “Reading-out a system and
updating the system with the reading is trivial.”, or, “Updating with the same property twice is trivial.”

In some circumstances, GetPut is quite a strong demand. For instance, classical agents who extract
and re-insert information from a quantum system will disturb the system via decoherence and the GetPut
axiom will not hold. Thus we also defined a strictly weaker notion.

Definition 2 (Weak Update Structure). A weak update structure (↑, ,∼, ) satisfies all the axioms of

2that is, associativity and a unit, and often speciality and the Frobenius law, etc.
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an update structure apart from GetPut which we replace with the strictly weaker repeat-update axiom:

=

↑

↑
↑ (3)

Proposition 1. [13] Any strong update structure is a weak update structure.

For a weak update, it is not assumed that extraction and re-insertion of data leaves the system invari-
ant. The Put is however “static”: updating twice with copies of a property is the same as updating once
with that property. This staticness is enough to ensure that disturbing a system twice via reading out and
reinserting is the same as just disturbing once, formally ↑ ◦ is idempotent. In [13] the idempotence of
↑ ◦ was used to demonstrate that any weak update structure in a category C can be used to construct
a strong update structure in Split(C), the Karoubi envelope of C. We give a separate operational axiom
to capture the existence of an update which does nothing to the system.

Definition 3 (Trivial Update). An update structure has a trivial update if

↑ =∃ such that (4)

It has a trivial outcome if has the same property but flipped vertically.

Since we introduce the weakening of strong update structures to cope with interactions which disturb
or collapse systems in the way that for example quantum measurements do, it is appropriate that those
weak updates which have trivial updates are strong.

Proposition 2. Any weak update structure with a trivial update is a strong update structure:

Proof. By insertion of the trivial update, PutGet, the repeat-update axiom, and another use of the trivial
update.

↑

=
↑

=

↑
=

↑
↑

↑=
(5)
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However, it is not the case that all strong update structures have trivial updates. It will be shown in
the next section that whilst vwb lenses define strong update structures, any vwb lens with a trivial update
has a separable Put morphism, ↑ = id× : S× p→ S.

It is worth pointing out that the PutPut and GetGet laws place quite strong constraints on the
(co)associativity of the (co)magma. One can deduce the following from PutPut and GetGet:

↑

=

↑

=

While the definition of an update structure allows for a (co)magma which is not (co)associative, in this
case the Put/Get would have to be noisy. More concretely it cannot be faithful (see definition 16).

2 Relation to Very-Well-Behaved Lenses

In this section we relate update structures to very-well-behaved lenses. Indeed, to those familiar with
lenses, our choice of language “Get” and “Put” may raise suspicions that the two are related. We now
make the connection precise.

Definition 4 (Very-Well-Behaved Lens). In a category C with finite products, a lens [9] is a tuple (S,V,g :
S→ V, p : S×V → S), where S and V are objects of C. A lens is further very-well-behaved (vwb) if it
satisfies the following:

• (PutPut): p(p(s,v1),v2) = p(s,v2)

• (PutGet): g(p(s,v)) = v

• (GetPut): p(s,g(s)) = s

Proposition 3. vwb lenses (S,V,g, p) in a category C with finite products are in bijection with up-
date structures that have trivial outcomes, ∼:= π2, and := δV . Under this bijection, the very-well-
behavedness laws are equivalent to their update structure counterparts.

Proof. Recalling that categories with finite products are cartesian monoidal, we rewrite the lens laws in
the following suggestive graphical form.

↑

S

S

=

V

V
↑

S=
V

S
S

V

V

g

S

↑

S

VV
V

S

↑

S

g

V S
S

↑

=

S

The bijection identifies p and ↑. is δV , the copy on V , and ∼ is π2. g and follow the obvious
type-matching strategy.
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V

V VS V

S VV

:=

S

↔↔

V

S

∼g

V

g
SS

We verify one injection as follows:

S g
V

=

V

g↔

V

g ↔

S

S
g

S

V

And the other (making use of the fact that has trivial outcomes in the penultimate step):

VS

S

↔

S

VS

S

VS

↔

S

V

↔

SS V

=

S

S V

From the substitutions on ∼ and , it immediately follows that the PutPut and GetPut laws are
equivalent for both update structures and vwb lenses. Regarding PutGet, we have that PutGet for lenses
implies PutGet for the corresponding update structure, and PutGet for an update structure implies PutGet
for the corresponding lens:

=

S ↑

V

VS

V V

SV

↑

S V

=

V

=

SS

S

V

↑
=

S

↑

S

↑

g

↑

SV

SS p

g

V

S

S

p

=

V

VV

V

=

S

↑

It is worth noting that this correspondence makes use of the ‘left-delete’ magma ∼= π2 which is not
a monoid.
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Thus update structures generalise lenses; every vwb lens is an update structure but not the converse.
Perhaps the most important distinction is that update structures allow for flexibility in the way that Get
affects the system. When a lens is viewed as an update structure, its Get operation does not modify
the system S; it duplicates it using the duplication map that comes with the finite product structure, and
returns it unmodified alongside the computed V .

In the more general setting of a monoidal category one is not guaranteed the additional structure of
a universal copying map, for instance we can at best copy one basis of a quantum system. As such it
is natural to require that the Get also returns a system of type S, rather than choosing to copy an entire
system in a particular basis. Thus Proposition 3 serves as a bridge between vwb lenses and update
structures in monoidal settings: where S and V in the monoidal category are comonoid objects, and
and ↑ are comonoid homomorphisms, one obtains a close analogue of vwb lenses.

This vantage point of lenses qua update structures appears to be an interesting new point in the space
of lens-like structures: it generalizes the usual cartesian lenses without being as general as optics [17].
We remark an interesting similarity with Abou-Saleh et al.’s monadic lenses [1]: they also generalize
lenses to a setting that is not quite cartesian monoidal, and in doing so come up with strikingly similar
laws. Specifically, their MPutGet and MGetPut laws are exact analogues to our PutGet and GetPut, that
would be drawn identically if string diagrams could be drawn in the monadic case. They also mention
that monadic lenses where the get direction is effectful require an analogue of our GetGet law. The
Kleisli category they use is however not monoidal in general, thus their monadic lenses are not quite an
instance of update structures.

We note that intuitively vwb lenses represent a case in which the only relevant update is the most
recent one, clearly then there should be no interesting vwb lenses with trivial updates. Indeed, any Put in
a vwb lens with a trivial update separates as a map which throws the new property away and leaves the
system alone.

↑

↑
=

↑
↑ = =

An additional distinguishing point between lenses and update structures appears relative to compo-
sition. Notions of lenses all have the important property of composability: one can compose lenses to
build accessors for a big data type in terms of accessors for its subcomponents. In this paper we however
do not investigate composition of update structures, and it appears there might be different sensible such
notions3, requiring different additional structure on the (co)magmas and operations.

3 Interacting Module-Comodule Pairs

Given a (co)magma (co)module pair, there are many possible PutGet rules one could impose and in this
section we will study a handful of these possibilities, elucidating the restrictions each choice places on
the rest of the structure, in particular the magma-comagma pair.

3with one possibility appearing in [13]
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A B C

↑
=

↑
= ↑

↑
=

∼

Proposition 4. In the presence of PutPut and GetGet, PutGet A implies:

1. with the GetPut rule, S ' S⊗ p, which in many categories, for instance FHilb, FRel and FSet,
means S or p have to in some way be trivial. In FHilb p = I, and in FRel and FSet, either p = I,
p =∅ or S =∅.

2. If the (co)magma has a (co)unit then the identity separates.

Proof. 1. In the presence of the GetPut law we immediately have that S ' S⊗ p. In FHilb this
requires p = I and in FRel and FSet either p = I, p = ∅ or S = ∅. Thus the update is rendered
essentially trivial.

2. By looking at ( ⊗ idp)◦ ◦↑ and ◦↑ ◦ (↑⊗ idp) one can show

= ↑ = ∼

and if the (co)magma have (co)units then (assuming S 6=∅ in FSet or FRel),

∼

∼

==
∼

Thus an update satisfying PutGet A would imply a very exotic magma-comagma: they cannot have
the GetPut rule in finite dimensions and even dropping this rule, they cannot have a (co)unit.

Proposition 5. PutGet B makes the comagma coassociative under the Put ↑:

↑
=

↑

Proof. Starting with the left-hand side and applying PutGet B twice followed by GetGet and PutGet B
in reverse recovers the right-hand side.
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Proposition 6. PutGet C makes the magma associative under the Get :

∼
∼

=

∼

∼

Proof. Starting with the left-hand side and applying PutGet C twice followed PutPut and PutGet C in
reverse recovers the right-hand side.

Proposition 7. Demanding PutGet B and C makes the magma and comagma Frobenius under the Put
(and the Get):

↑

=

↑ ↑

=∼
∼

∼

Proof. Consider ◦↑ ◦ (↑⊗ idp) and apply the following laws:

• PutGet B followed by PutPut, for the left-hand side

• PutPut followed by PutGet B, for the centre

• PutGet C followed by PutGet B, for the right-hand side

Furthermore, there are conditions the magma and comagma inherit via reference to the (co)module
structure alone.

Definition 5 (Commutative). Put (Get) is commutative if

↑

↑

↑

↑
=

(6)

Proposition 8. Commutativity of Put (Get), makes the magma (comagma) commutative under the Put
(Get):

↑
=

↑

∼ ∼

Proof. By use of PutPut on both sides of the equation.
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Proposition 9. A trivial update (outcome) gives the magma (comagma) a unit (counit) under the Put
(Get):

=↑
↑

∼
=

↑

∼

Proof. By use of PutPut in the 2nd and 3rd expressions.

4 Quantum Measurements As Weak Update Structures

We now show that decoherence preserves the equations of a weak update structure, and that the projector
valued spectra used to define quantum measurements also define strong update structures. As a corollary,
every quantum measurement can therefore be used to define an update structure.

4.1 Applying Decoherence to Update Structures

That applying decoherence to the property wire produces a new update structure will be a corollary of
the following general result.

Proposition 10 (Transformation on Weak Update structures). Given an update structure (↑, ,∼, )
and a morphism m : p−→ p satisfying,

∼∼

m

=

m

=

mm

mm

m

m

m=

mm

(7)

one can define a weak update structure by the following:

↑→↑→

m

m

∼ → →
∼

mm

mm

(8)
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Proof. We give the proof that the Repeat Update axiom is preserved

↑

m

=
↑

m

↑

↑

m

=

↑

mm

m

(9)

The rest of the axioms follow similarly.

As an important special case the above proposition applies to any m : p→ p satisfying:

∼
∼

m

=

m

=

mm

mm

m

m

m= (10)

that is, any idempotent magma co-magma homomorphism. For any †-compact category C the functor
F : C−→CPM(C) which takes f : A→ B to f ⊗ f ∗ : A⊗A∗→ B⊗B∗, maps any update structure in C to
an update structure in CPM(C). Furthermore, for any special commutative †-Frobenius algebra , the
decoherence morphism is an idempotent magma homomorphism for F( ).

Corollary 1. Given any weak update structure (↑, , , ) in a †-compact category C on system S,
and property p with a special commutative †-Frobenius algebra, composition with the decoherence
map after the functor F : C→ CPM(C),

∗

, ,

↑ ↑∗

,

(11)
generates a weak update structure on F(S) = S⊗S∗ and F(p) = p⊗ p∗.

Furthermore, update structures obtained by decoherence define update structures on formally classi-
cal objects in Split(CPM(C)) - the Karoubi envelope of CPM(C).

Definition 6 (Karoubi Envelope). The Karoubi envelope Split(C) of a category C has as objects the
pairs (A,π) where A ∈ Ob(C) and π : A→ A is an idempotent. The morphisms f : (A,π)→ (B,σ) are
the morphisms f : A→ B such that σ ◦ f = f = f ◦π .
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As studied in [8, 19, 16], the object (F(p), ) represents a classical version of the object p, on
which the only states and transformations permitted are those which are unaffected by decoherence
f ◦ = f = ◦ f . The weak update structure defined in equation (11) then also appears as a weak
update structure in Split(CPM(C)) on system (F(S), idF(S)) and property (F(p), ).

4.2 Quantum Observables Define Update Structures

Projector valued spectra in FHilb capture quantum observables, they are characterised by the following
graphical conditions.

Definition 7 (Projector-Valued Spectrum). [6] The pair of morphisms (Π, ) in FHilb is a projector-
valued spectrum if is a special commutative †-Frobenius algebra and Π satisfies:

Π

Π

=
Π

=Π†
Π

Π† =

(12)
These equations are paraphrased by asking that Π be p-idempotent, p-self-adjoint, and p-complete re-
spectively. Projectors are recovered from (Π, ) by inserting states in the basis {|i〉} associated to .

Π

i

≡Pi

(13)

Since copies the elements of {|i〉}, p-idempotency implies orthogonality and idempotency of the
Pi, p-self-adjointness implies adjointness of each Pi and p-completeness implies that the projectors sum
to the identity.

A projector valued spectrum defines a quantum observable, when the observable wire reads |i〉, the
system will be found in the image of Pi. Using the † we can construct an update structure from a projector
valued spectrum.

Proposition 11. For every projector-valued spectrum (Π, ) , the tuple (Π,Π†, , ) is an update
structure.

Proof. By p-idempotency, (Π,Π†, , ) is immediately a (co)magma module pair. The GetPut axiom
holds since any projector valued spectrum is isometric with inverse given by the adjoint:

= =
Π

Π†

= =
Π

Π

ΠΠ

(14)
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Finally the PutGet axiom holds.

Π

=
Π†

=
Π

Π

Π

=

Π

(15)

Quantum measurements (Q(Π),Q( )) are defined by taking projector valued spectra (Π, ) in
FHilb, embedding into CPM(FHilb), F ◦ † : FHilb→ CPM(FHilb) [18] and subsequently applying
the decoherence morphism to the property wires [6, 4]:

Q(Π) ≡
Π† ΠT

Q( ) ≡

Corollary 2. For every quantum measurement (Q(Π),Q( )) the tuple (Q(Π)†,Q(Π),Q( )†,Q( ))
is a weak update structure.

The GetPut axiom fails for quantum measurements because extraction and re-insertion of classical
information induces decoherence, a disturbance, on the quantum system. Via a GetPut restriction as
introduced in [13] any such weak update structure on a fully quantum system (F(S), idF(S)) can be used
to construct a strong update structure on a measured, partially decohered, system (S,↑ ◦ ). On top
of being update structures, projector valued spectra carry some additional conditions, they have trivial
updates (outcomes) their Puts are commutative, and they are faithful.

Definition 8 (Faithful). An update structure is faithful if

↑
=

↑
⇐⇒ f g=

f g
(16)

Conversely, the above conditions are enough to characterise projector valued spectra.

Proposition 12. An update structure of the form (↑,↑†, , ) in FHilb is a projector valued spectrum
if and only if it is faithful, commutative, and has a trivial update (outcome).

Proof. Since we have already demonstrated the⇒ direction we only need to consider⇐. The results of
section 3 imply that the magma of a faithful, commutative †-update with a trivial update (outcome) is a
commutative †-Frobenius algebra, furthermore by applying the PutPut axiom to the left hand side of the
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repeat update axiom, this Frobenius algebra is special. The unit is the trivial update, so ↑ is p-complete.
The PutPut axiom is precisely the demand of p-idempotency, and finally since ↑ is p-complete, the
PutGet axiom implies that ↑ is p-self-adjoint.

↑
=

↑†
↑

↑† = (17)

To search for new update structures in FHilb we must then relax one of the conditions of proposition
12.

5 Examples of Update Structures

To demonstrate the kinds of procedures that can be implemented as update structures we give some new
examples in FHilb, CPM(FHilb), and Set.

5.1 Morphisms as Properties

We now give a new example of a non-commutative strong update structure in FHilb based on the “pair of
pants” monoid [14]. †-Compact categories come equipped with an evaluation morphism ε : S∗⊗S⊗S→
S and a composition morphism σ : S∗⊗S⊗S∗⊗S→ S∗⊗S which satisfy PutPut. The evaluation takes
as inputs a morphism and a state, and produces an output by applying the morphism to the state. We can
use ε and σ as ↑ and ∼ respectively, along with the dagger to construct an update structure for which
systems are states, and properties are morphisms waiting to be applied to those states.

Proposition 13. The tuple (↑, ,∼, ) in a †-compact category with invertible scalars defined by,

S

S p

=
1
d

S

↑

S p

= ,

p

=

p

p

1
d,

p

=

p

∼

p

S∗ SS

S∗ S S∗ S

S∗ S S∗ S

S∗ SS

is a strong update structure.
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Proof. PutPut and GetGet can be confirmed graphically, but also follow by definition of composition σ

as the adjunct to ε ◦ (ε⊗ I) in any symmetric closed monoidal category. PutGet is quick to verify

↑

S p

=

S p

1
d

=
1
d

↑
= (18)

as is GetPut

↑

=
1
d

= (19)

This update structure is faithful and has a trivial update, its magma and co-magma are Frobenius, but
non-commutative. We note that the ↑ of this update structure was introduced in [7] as a way to make
“fuzz” and “phaser” updates internal.

5.2 A Security Tagged Database

Update structures generalise vwb lenses by allowing for a Get of type : S→ S⊗ p which returns the
system S in addition to the property p. This allows us to create lens like structures for which the act of
tampering has an influence on the system. We present a toy example in Set by introducing a security
feature which raises a flag to indicate that a database has been breached. We imagine that the system
decomposes as a database entry and a flag S = p⊗F with F = {safe,breached}. The flag records
whether or not anybody has breached the database since it was last set to safe. In particular we take
↑ : p⊗F⊗ p→ p⊗F and : p⊗F → p⊗F⊗ p defined by:

↑ :: 〈p,x〉× p′ 7→ 〈p′,breached〉 ∼ :: p× p′ 7→ 〈p′〉
:: 〈w,x〉 7→ 〈p,breached〉× p :: 〈p〉 7→ p× p

It is easy to check that this choice defines a weak update structure, the GetPut axiom fails precisely
because the act of interacting with the database has influence on the database, beyond the property p. In
a restricted case for which there is only a flag for the occurrence of an update S = p⊗F↑ , this update
structure is a lens, although not a vwb lens. Such a weak update structure can be used to build a new
strong update structure in Split(Set) on the breached type (S,↑ ◦ ) [13].
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5.3 Quantum Versions of Database Updates

We now consider update structures in FHilb or CPM(FHilb) with ( , ) in the form of a projector
valued spectrum or quantum measurement, and with a vwb flavoured ignore-replace co-magma ∼=
⊗ f . In FHilb a natural choice is for to copy a subsystem S2 of S in a particular basis, and for ↑ to

delete in the same basis.

S

↑

S p

=

p

=

p

∼

pS2 pS1
p

S1 S2
p

p

S

S p

=

S2

p

S1

S1 S2

=

p

pp
p

p

p

(20)

where is a special commutative †-Frobenius algebra. We note that ↑ and∼ both require post-selection
on the unit for . The embedding F : FHilb→ CPM(FHilb) followed by application of decoherence
to every property wire as in proposition 10 generates a new update structure, to implement this new ↑
would still require a post-selection on F(S2).

We can directly define a vwb lens-like update structure with a ↑ which deterministically discards [4]
and replaces the property F(S2) and with ( , ) a quantum measurement.

↑ = =∼

= =

(21)

The axioms are easily checked directly, they also follow by noting that this update structure can be
constructed from our projector valued spectrum by applying decoherence to each property wire followed
by applying GetPut to each system wire [13], each of which preserves the axioms of a weak update
structure. This update structure is weak because the system F(S1)⊗F(S2) is partially decohered when
information about F(S2) is extracted and re-inserted. The reduced process on the system obtained by
tracing out the property wire of is a partial decoherence, whereas for any built from composing a
deterministic g : F(S1)⊗F(S2)→ F(S2) and a copy map (i.e. in a lens-like way), the reduced process
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on the system

g

= = (22)

is a full decoherence on the entire system.

6 Conclusion

In this article we have furthered our development of update structures. We originally introduced update
structures with operational inspiration and we have now shown that very-well-behaved lenses, quantum
observables and measurements and a slight alteration on the pair-of-pants monoid all live within the zoo
of update structures. This offers a unifying perspective of two fields and elevates update structures to
algebraic objects that deserve further investigation.

This work opens several lines of investigation. We have not discussed composition of update struc-
tures in this article, but there seems to be multiple interesting such notions. Each such notion would
impose additional structure in order to be well-defined. Exploring these alternatives would provide fur-
ther insight into those structures and contribute to a more featureful unification.

We also endeavour to expand the zoo of update structures with more exotic beasts. Perhaps such
structures could allow for updates which behave neither quantumly nor classically and further the search
for post-quantum phenomena.

A further goal would be to formally justify the axioms of update structures. Currently they are
operationally well-chosen but it is not clear how necessary and sufficient they are, or whether other
choices could lead to related and interesting structures. We touched upon this when we investigated
alternative PutGet rules, but the full ramifications of these choices are not currently understood.
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