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A compositional sheaf-theoretic framework for the modeling of complex event-based systems is
presented. We show that event-based systems are machines, with inputs and outputs, and that they
can be composed with machines of different types, all within a unified, sheaf-theoretic formalism. We
take robotic systems as an exemplar of complex systems and rigorously describe actuators, sensors,
and algorithms using this framework.

1 Introduction

This paper presents a unified modeling framework for event-based systems, focusing on the standard
example of cybernetic systems. Specifically, we present event-based systems as machines, showing how
to compose them in various ways and how to describe diverse interactions (between systems that are
continuous, event-based, synchronous, etc). We showcase the efficacy of our framework by using it to
describe a robotic system, and we demonstrate how apparently different robotic components, such as
actuators, sensors, and algorithms, can be described within a common sheaf-theoretic formalism.

Related Work. Cyber-physical systems (CPSs), first mentioned by Wiener in 1948 [21], consist of an
orchestration of computers and physical systems [9] allowing the solution of problems which neither part
could solve alone. CPSs are complex systems including physical components, such as actuators, sen-
sors, and computer units, and software components, such as perception, planning, and control modules.
Starting from the first mention of CPSs, their formal description has been object of studies in several dis-
ciplines, such as control theory [2, 20, 5, 7], computer science [8, 16, 15, 10, 11], and applied category
theory [1, 17, 18].

Traditionally, control theorists approached CPSs through the study of hybrid systems, analyzing their
properties and proposing strategies to optimally control them. In [2], researchers identify phenomena
arising in real-world hybrid systems and introduce a mathematical model for their description and opti-
mal control. In [20], a compositional framework for the abstraction of discrete, continuous, and hybrid
systems is presented, proposing constructions to obtain hybrid control systems. Furthermore, [5] defines
event-driven control strategies for multi-agent systems, and [7] proposes an introduction to event- and
self-triggered control systems, which are proactive and perform sensing and actuation when needed.

On the other hand, computer scientists focused on the study of verification techniques for CPSs.
In [8], the researcher introduces a comprehensive theory of hybrid automata, and focuses on tools for the
reliability analysis of safety-critical CPSs. Similarly, [16, 15] develop a differential dynamic logic for
hybrid systems and introduce deductive verification techniques for their safe operation. Furthermore, [10,
11] underline that to achieve simplicity and understandability, clear, deterministic modeling semantics
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have proven valuable in modeling CPSs, and suggest the use of modal models, ensuring that models are
used within their validity regime only (e.g. discrete vs. continuous).

In 2006, [1] proposes the first category-theoretic framework for the study of hybrid systems, defining
the category of hybrid objects and applying it to the study of bipedal robotic walking. Finally, [19, 17,
18] present temporal type theory and machines, which are shown to be able to describe discrete and
continuous dynamical systems, and which lay the foundation for this work.

Organization of the Paper. Section 2 recalls the theory of sheaves and machines presented in [18]
and includes explanatory examples. Section 3 shows how to model event-based systems within this
framework, and provides practical tools and examples. Section 4 showcases the properties of the defined
framework, by employing it to model the feedback control of a flying robot.

Acknowledgements We would like to thank Dr. Paolo Perrone for the fruitful discussions. DS ac-
knowledges support from AFOSR grants FA9550-19-1-0113 and FA9550-17-1-0058.

2 Background

The reader is assumed to be familiar with category theory. An extended, self-contained version of this
article is reported in [22]. In this section, we review the material needed to present Section 3. This paper
builds on the theory presented in [17, 18]. Let R≥0 denote the linearly ordered poset of non-negative real
numbers. For any 0 ∈ R≥0, let

Ph0 : R≥0→ R≥0

ℓ ↦→ 0+ℓ .

denote the translation-by-0 function.

Definition 2.1 (Category of continuous intervals Int). The category of continuous intervals Int is com-
posed of:

• Objects: Ob(Int)B R≥0. We denote such an object by ℓ and refer to it as a duration.

• Morphisms: Given two durations ℓ and ℓ ′, the set Int(ℓ ,ℓ ′) of morphisms between them is

Int(ℓ ,ℓ ′)B {Ph0 | 0 ∈ R≥0 and 0+ℓ ≤ ℓ ′}.

• The identity morphism on ℓ is the unique element idℓ B Ph0 ∈ Int(ℓ ,ℓ ).
• Given two morphisms Ph0 : ℓ → ℓ ′ and Ph1 : ℓ ′→ ℓ ′′, we define their composition as Ph0 #Ph1 =

Ph0+1 ∈ Int(ℓ ,ℓ ′′).
We often denote the interval [0, ℓ ] ⊆ R by ℓ̃ . A morphism Ph0 can be thought of as a way to include

ℓ̃ ′ into ℓ̃ , starting at 0, i.e. the subinterval [0, 0+ℓ ′] ⊆ [0, ℓ ].1

Proposition 2.2. Int is indeed a category: It satisfies associativity and unitality.
1Int is not just the category of intervals [0, 1] with inclusions, which we temporarily call Int′; in particular Int′ is a poset,

whereas Int is not. For experts: Int′ is the twisted arrow category of the poset (R,≤), whereas Int is the twisted arrow category
of the monoid (R,+,0) as a category with one object.
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Definition 2.3 (Int-presheaf). An Int-presheaf � is a functor

� : Intop→ Set,

where Set is the category of sets and functions. Given any duration ℓ , we refer to elements G ∈ �(ℓ ) as
length-ℓ sections (behaviors) of �. For any section G ∈ �(ℓ ) and any map Ph0 : ℓ ′→ ℓ we write G |[0,0+ℓ ′]
to denote its restriction �(Ph0)(G) ∈ �(ℓ ′).
Definition 2.4 (Compatible sections). If � is an Int-presheaf, we say that sections 0 ∈�(ℓ ) and 0′ ∈�(ℓ ′)
are compatible if the right endpoint of 0 matches the left endpoint of 0′, i.e.:

0 |[ℓ ,ℓ ] = 0′ |[0,0].

Definition 2.5 (Int-sheaf). An Int-presheaf

% : Intop→ Set.

is called an Int-sheaf if, for all ℓ ,ℓ ′ and compatible sections ? ∈ %(ℓ ), ?′ ∈ %(ℓ ′) (i.e., with ? |[ℓ ,ℓ ] =
?′ |[0,0]), there exists a unique ?̄ ∈ %(ℓ +ℓ ′) such that

?̄ |[0,ℓ ] = ? and ?̄ |[ℓ ,ℓ+ℓ ′] = ?′.

Morphisms of Int-sheaves are just morphisms of their underlying Int-presheaves. We denote the category
of Int-sheaves as Shv(Int)B Ĩnt.

Example 2.6 (Initial and terminal objects in Ĩnt). The terminal object in Ĩnt is called 1, and it assigns to
each interval ℓ the one-element set {1}. Similarly ∅ ∈ Ĩnt is the initial object and sends each interval ℓ
to the empty set ∅.

Example 2.7 (Period-3 clock). For any 3 > 0 define Clock3 to be the presheaf with

Clock3(ℓ )B
{
{C1 , . . . , C=} ⊆ ℓ̃ | C1 < 3,ℓ − C= < 3, and C8+1− C8 = 3 for all 1 ≤ 8 ≤ =−1

}
.

Note that (ℓ/3)− 1 ≤ = ≤ ℓ/3. We denote an element of Clock3(ℓ ) by ) = {C1 , . . . , C=} ⊆ ℓ̃ ; it’s the set
of “ticks” of the clock, spaced 3-apart. Given ) and Ph0 : ℓ ′→ ℓ , the restriction is given by taking those
“ticks” that are in the smaller interval:

Clock3(Ph0)()) = ) |[0,0+ℓ ′] B )∩ ℓ̃ ′.

Definition 2.8 (Machine). Let �,� ∈ Ĩnt. An (�,�) machine is a span in Ĩnt

�

� �

5 in 5 out

Equivalently, it is a sheaf � together with a sheaf map 5 : �→ �×�.2 We refer to � as the input sheaf,
to � as the output sheaf, and to � as the state sheaf.

2Technically, we identify spans (�, 5 ) and (�′, 5 ′) if there is an isomorphism 8 : �→ �′ with 8 # 5 ′ = 5 .
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Remark 2.9. Definition 2.8 is symmetric, whereas machines are generally considered causal: inputs
affect later outputs. This is captured formally by the notion of being total, deterministic, and inertial,
defined in [18]. Totalness (resp. determinism) means that given 2 ∈ �(ℓ ) and 0′ ∈ �(ℓ ′)with 5 in(2)|[0,ℓ ] =
0, there is at least one (resp. at most one), 2′ ∈ �(ℓ ) such that 2′ |[0,ℓ ] = 2 and 5 in(2′) = 0′. In other words,
there is a unique way that the internal behavior can accommodate any input coming in. A machine is
�-inertial if its internal state on an interval [0, 1] determines its output on [0, 1+ �].

In this paper, all of our machines will be total and deterministic; however we will not mention
this explicitly. Each can also be made �-inertial by composing it (Definition 2.12) with an �-delay
(Example 2.11). A result of [18] says that if all the machines in a network are deterministic, total, and
inertial, then their composite is as well (Definition 2.12).

Example 2.10 (Continuous dynamical system). For Euclidean spaces �,�, an (�,�)-continuous dy-
namical system (CDS) consists of

• ( = R= , called the state space.

• The dynamics ¤B = 5 dyn(B, 0), for any 0 ∈ �, B ∈ (, and smooth function 5 dyn.

• The readout 1 = 5 rdt(B), with 1 ∈ � and smooth function 5 rdt.

We can write this as a machine

�

�1(�) �1(�)

5 in 5 out

where the apex is given by

�(ℓ ) = {(0, B, 1) ∈ �1(�)×(×�1(�) | ¤B = 5 dyn(0, B) and 1 = 5 rdt(B)},

and 5 in and 5 out are the projections (0, B, 1) ↦→ 0 and (0, B, 1) ↦→ 1. Note that �1(�), �1(�) represent the
continuously differentiable functions on � and �, respectively.

Example 2.11 (�-delay). Given any sheaf � and positive real � > 0, we define the �-type �-delay

machine Del�� to be the span �
5 in

←−− ��
5 out

−−→ �, where ��(ℓ ) B �(ℓ + �) is the sheaf of �-extended
behaviors, 5 in(0) = 0 |[0,ℓ ], and 5 out(0) = 0 |[�,ℓ+�].
Definition 2.12 (Composition of machines). Given two machines "1 = (�1 , 5

in
1 , 5

out
1 ) and "2 = (�2 , 5

in
2 , 5

out
2 )

of types (�,�) and (�,�) respectively, their composite is the machine " = (�1×��2 , 5
in , 5 out) of type

(�,�), namely the span given by pullback:

�1×��2

�1 �2

� � �

y

5 in
1 5 out

1 5 in
2 5 out

2

Once we demand all our machines to be inertial, they do not form a category because there is no
identity machine. However they do form an algebra on an operad of wiring diagrams; see [17] for
details.
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3 Event-based Systems

Definition 3.1 (Event stream). Let � be a set and ℓ ≥ 0. We define a length-ℓ event stream of type � to
be an element of the set

Ev�(ℓ )B {((, 0) | ( ⊆ ℓ̃ , ( finite , 0 : (→ �}.

For an event stream ((, 0) we refer to elements of ( = {B1 , . . . , B=} ⊆ ℓ̃ as time-stamps, we refer to 0 as
the event map, and for each time-stamp B8 we refer to 0(B8) ∈ � as its value.

If the set of time-stamps is empty, there is a unique event map, and we refer to (∅, !) as an empty
event stream.

Example 3.2. Consider a Swiss traffic light and its set of color transitions

� = {redToOrange,orangeToGreen,greenToOrange,orangeToRed}.

We will give an example of an element ((, 0) ∈ Ev�(60), i.e. a possible event stream of length 60. Its set
of time-stamps is ( = {20,25,45,50}, and the event map is given by

0 : (→ �

B ↦→


redToOrange, if B = 20,
orangeToGreen, if B = 25,
greenToOrange, if B = 45,
orangeToRed, if B = 50.

Definition 3.3 (Restriction map on event streams). For any event 4 = (( ⊆ ℓ̃ , 0 : (→ �) ∈ Ev�(ℓ ) and
any 0 ≤ C ≤ C′ ≤ ℓ , let (C ,C′ B {1 ≤ 8 ≤ = | C ≤ B8 ≤ C′} ⊆ (, and let 0C ,C′ : (C ,C′→ (→� be the composite.
Then we define the restriction of 4 along [C , C′] ⊆ ℓ̃ to be 4 |[C ,C′] B ((C ,C′ , 0C ,C′).
Proposition 3.4. Ev is functorial: Given a function 5 : �→ � there is an induced morphism Ev 5 :
Ev�→ Ev� in Ĩnt, and this assignment preserves identities and composition.

Proposition 3.5. For any set �, the presheaf Ev� is in fact a sheaf.

Remark 3.6. There is a monoidal structure (∅,�) on Set: Its unit is ∅ and the monoidal product of �
and � is �� � B �+�+�×�.

Proposition 3.7. Ev : (Set,�,∅) → (Ĩnt,×,1) is a strong monoidal functor: 1 � Ev∅ and for any sets
�,�, we have

Ev�×Ev� � Ev��� .

Definition 3.8 (Event-based system). Let �,� be sets. An event-based system % = (�, 5 in , 5 out) of type
(�,�) is a machine

�

Ev� Ev�

5 in 5 out
(1)

between two event streams. For any input event stream 4 ∈ Ev�(ℓ ), the preimage
(
5 in)−1 (4) is the set of

all internal behaviors consistent with 4.
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Remark 3.9. An event-based system % of type (�,�) is graphically represented as

%Ev� Ev�

Example 3.10 (Discrete dynamical systems as event-based systems). Let �,� be sets. Then an (�,�)-
discrete dynamical system (DDS) consists of:

• A set (, elements of which are called states.

• A function 5 upd : �×(→ (, called the update function.

• A function 5 rdt : (→ �, called the readout function.
We can transform any (�,�) dynamical system into an (�,�)-event-based system as follows. Define �
to be the sheaf with the following sections:

�(ℓ )B {) ⊆ ℓ̃ , (0, B) : )→ �×( | ) finite and B8+1 = 5 upd(08 , B8) for all 1 ≤ 8 ≤ =−1}.

The restriction map is the same as for the underlying event stream (Definition 3.3). We define the span
(1) as follows. Given (), 0, B) ∈ �(ℓ ), we have 5 in(), 0, B) = (), 0) and 5 out(), 0, B) = (), (B # 5 rdt)).

Given a function 5 : (→ � and a subset �′ ⊆ �, we can take the preimage 5 −1(�′) ⊆ ( and get a
function 5

��
�′ : 5

−1(�′) → �′. This can be used to define a filter for event-based systems.
Definition 3.11 (Filter for event-based systems). Let � and �′ ⊆ � be sets. An (�,�′)-filter is an
(�,�′)-event-based system with � = �, 5 in = id, and 5 out(ℓ ) : Ev�→ Ev�′ defined on ((, 0), where
( ⊆ ℓ̃ and 0 : (→ �, as follows:

5 out(ℓ )((, 0)B (0−1(�′), 0
��
�′).

In other words it consists of the subset (the preimage of 0−1(�′) ⊆ () of those time-stamps whose asso-
ciated values are in �′, together with the original event map on that subset.
Definition 3.12 (Continuous stream). Let � be a topological space. We define a continuous stream of
type � to be

Cnt�(ℓ )B {0 | 0 : ℓ̃ → � continuous}.
Definition 3.13 (Lipschitz continuous function). Given two metric spaces (�, 3�) and (�, 3�), a function
5 : �→ � is called Lipschitz continuous if there exists a  ∈ R,  ≥ 0, such that for all 01 , 02 ∈ �:

3�( 5 (01), 5 (02)) ≤  3�(01 , 02).

Remark 3.14 (Lipschitz continuous stream). In Definition 3.12, if � is a metric space, then we can
consider the subsheaf consisting of only those streams 0 : ℓ̃ → � that are Lipschitz continuous, i.e.

LCnt�(ℓ ) = {0 : ℓ̃ → � | 0 Lipschitz continuous} ⊆ Cnt�(ℓ ).

Example 3.15. For any (, there is a codiscrete topological space (̂ with points ( and only two open sets:
∅ and (. For any topological space -, the functions from the underlying set of - to ( are the same as
the continuous maps -→ (̂.3 Thus, we have

Cnt
(̂
(ℓ ) = {0 | 0 : ℓ̃ → (̂, 0 continuous}
= {0 | 0 : ℓ̃ → (}.

We sometimes denote Cnt
(̂

simply by Cnt(.
3Technically, one can say that the underlying set functor is left adjoint to the codiscrete functor.
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Definition 3.16 (Sampler). Let � be a topological space and choose 3 ∈ R≥0, called the sampling time.
A period-3 �-sampler is a span

Clock3 ×Cnt�

Cnt� Ev�

5 cnt 5 evt

where 5 cnt , 5 evt are morphisms:

5 cnt : Clock3 ×Cnt�→ Cnt�
(), 0) ↦→ 0,

5 evt : Clock3 ×Cnt�→ Ev�
(), 0) ↦→ ) # 0.

The second formula is the composite ) ⊆ ;̃ 0−→ �, which takes the value of 0 at 3-spaced intervals.

Definition 3.17 (!-level-crossing sampler). Let (�,dist) be a metric space and consider a Lipschitz input
stream LCnt�(ℓ ). Consider the level ! ∈ R. A !-level-crossing sampler of type � is a machine

%

LCnt� Ev�

5 cnt 5 evt

with %(ℓ )B {(2, 00) | 2 ∈ LCnt�(ℓ ), 00 ∈ �}. Given ? = (2, 00) ∈ %(ℓ ), we have 5 cnt(2, 00) = 2. Further-
more, either dist(2(C), 00) < ! for all C ∈ ℓ̃ or there exists C ∈ ℓ̃ with dist(2(C1), 00) ≥ !. In the first case,
take 5 evt(2) = (∅, !) to be the empty event stream. In the second case, define

C1 = inf{C ∈ ℓ̃ | dist(2(C1), 00) ≥ !}

and let 01 = 2(C1). Recursively, define C8+1 ∈ ℓ̃ to be the least time such that dist(2(C8+1), 08) ≥ ! (if there
is one). There will be a finite number of these because 2 is Lipschitz. We denote the last of such times
by C= . Then, we define

5 evt : %(ℓ ) → Ev�
(2, 00) ↦→ {C1 , . . . , C= , 2(C1), . . . , 2(C=)}.

Definition 3.18 (Reconstructor). Let � be a set. A reconstructor of type � is a span

�

Ev� Cnt�

5 evt 5 cnt

with �(ℓ )= {((, 00 , 0) | ( ⊆ ℓ̃ finite, 00 ∈�, 0 : (→�}, where 5 evt : �→Ev� is given by 5 evt((, 00 , 0)B
((, 0), and where 0′ B 5 cnt(00 , B1 , . . . , B= , 01 , . . . , 0=) : ℓ̃ → � is given by

0′(C)B


00 , 0 ≤ C < B1

0(B8), B8 ≤ C < B8+1 , 8 ∈ {2, . . . , =−1}
0(B=), B= ≤ C ≤ ℓ .
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Remark 3.19. The reconstructed stream is not continuous, it is only piecewise continuous. Luckily, it is
continuous with respect to the codiscrete topology. We denote �̂ simply by �.
Remark 3.20. The reconstructor is known in signal theory as the zero-order-hold (ZOH), and represents
the practical signal reconstruction performed by a conventional digital-to-analog converter (DAC).

Definition 3.21 (Composition of event-based systems). Given two event-based systems %1 = (�1 , 5
in

1 , 5
out

1 )
and %2 = (�2 , 5

in
2 , 5

out
2 ) of types (�,�) and (�,�), they compose as machines do (Definition 2.12). Their

composite is the (�,�)-event-based system % = (�1×��2 , 5
in , 5 out).

Remark 3.22. We refer to the composition of event-based systems as putting them in series, and represent
it graphically as

%1 %2 %Ev�
Ev�

Ev� ≡ Ev� Ev�

Definition 3.23 (Tensor Product of event-based systems). Given two event-based systems %1 = (�1 , 5
in

1 , 5
out

1 )
and %2 = (�2 , 5

in
2 , 5

out
2 ) of types (�,�) and (�,�), their tensor product is an event-based system % =

(�1×�2 , 5
in , 5 out) of type (���,���), i.e. a span

�1×�2

Ev�×Ev� Ev�×Ev�

5 in
1 × 5

in
2 5 out

1 × 5
out
2

This is an event-based system because Ev�×Ev� � Ev��� and Ev�×Ev� � Ev��� .

Remark 3.24. We refer to the tensor product of event-based systems as putting them in parallel, and
represent it graphically as

%1

%2

%

Ev� Ev�

Ev� Ev�

≡ Ev��� Ev���

Definition 3.25 (Trace of event-based system). Given an event-based system % = (�, 5 in , 5 out) of type
(�×�,�×�), its trace is an event-based system %′ = (�tr , 5

in
tr , 5

out
tr ) of type (�,�) given by

�tr(ℓ ) = {3 ∈ �(ℓ ) | �2( 5 in(3)) = �2( 5 out(3))}

with 5 in
tr (3) = �1( 5 in(3)) ∈ Ev� and 5 out

tr (3) = �1( 5 out(3)) ∈ Ev�.

Remark 3.26. We depict an event-based system with trace as having feedback or a loop, and represent it
graphically as

%

Ev�

Ev� Ev�
%′ Ev�Ev�≡
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Goal ProfileObserved Retinal Events

(a) (b) (c)

Figure 1: (a) Illustration of the neuromorphic heading regulation problem. (b) Working principle of the
Dynamic Vision Sensor [13]. (c) Events over a given time-window [3] .

4 Example: Neuromorphic Optomotor Heading Regulation

In the following, we want to show that complex CPSs can be modeled using the framework presented in
Section 3. To do so, we consider the neuromorphic optomotor heading regulation problem studied in [3].
Specifically, we consider the case of a body moving in the plane and changing its orientation, expressed
as an element of SO(2), based on the scene observed by an event camera mounted on it. The result
is reported in Figure 2, which shows that this complex system can be understood as the composition
(Definition 2.12) of machines.

4.1 Background on Event Cameras

Event cameras are asynchronous sensors which have introduced a completely new acquisition technique
for visual information [13]. This new type of sensors samples light depending on the scene dynamics and
therefore differs from standard cameras. In particular, event cameras show notable advantages such as
high temporal resolution, low latency (in the order of microseconds), low power consumption, and high
dynamic range, all of which naturally encourage their employment in robotic applications. An exhaustive
review of the existing applications of event cameras has been reported in [6].

Event Generation Model

In the following, we review the event generation model presented in [3]. An event camera [13] is com-
posed of a set S, elements of which are called pixels, reacting (independently) to changes in light bright-
ness. There is a function dir : S → S1, representing the direction of each pixel in the event camera’s
field of view. The environment reflectance is a function < : S1→ R≥0, such that <(dir(B)) represents
the intensity of light from direction dir(B) ∈ S1 at any given moment of time. The light field is a map

� : R≥0×S → R≥0

(C , B) ↦→ �BC ,
(2)

where �BC represents the intensity of light reaching the event camera at time C in direction dir(B) ∈ S1.
Brightness is expressed as !B log(�BC ). An event 4 =

(
B, C , ?

)
is generated at pixel location B at time C if

the change
Δ!(B, C)B !(B, C)−!(B, C′)
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in brightness at that pixel since the last event C′ was fired reaches a threshold ±� (Figure 1b), i.e.
|Δ!(B, C)| = ?�, where ? ∈ {−1,1} represents the event’s polarity [6] (blue and red in Figure 1).
Remark 4.1. Note that the contrast sensitivity � can be tuned depending on the applications through the
pixel bias currents, as explained in [14].

4.2 Robotic System Description

In this section, we describe the robotic system presented in [3]. The system is composed of a body,
which is able to move on the plane and to change its orientation (heading), expressed as an element
of SO(2). An event camera is mounted on the body, and allows for it to perceive the environment.
Furthermore, heading regulation happens in image space via feedback from the event camera through a
decision process (regulator). A graphical representation of the robotic system is shown in Figure 2.

Body
Dynamics

(Definition 4.8)

Observed
Scene

(Definition 4.11)

Event
Camera

(Definition 4.4)

Heading
Regulator

(Definition 4.7)

Pose
(LCntR)

Light field
(LCnt⊙

B∈S R≥0
)

Events
(Ev⊙

B∈S&
)

Control
(EvR)

Figure 2: Graphical representation of the neuromorphic heading regulation problem as a composition of
machines, together with input-output stream types.

In the following, each one of the aforementioned components will be described as a machine, show-
ing the unifying properties of our framework. The components’ interactions will be represented through
composition and product of machines. The diagram reported in Figure 2 contextualizes the following
definitions.

4.2.1 Event Camera

To represent an event camera in our framework, we first consider a single pixel as a machine. In Def-
inition 4.4 we will define an event camera to be the product (Definition 3.23) of = independent event
camera pixels.

Definition 4.2 (Event camera pixel). First, define a (LCntR≥0 ,LCntR) machine %1

�

LCntR≥0 LCntR

5 out
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with �(ℓ ) B {0 : ℓ̃ → R | 0 Lipschitz continuous}. For 0 ∈ �(ℓ ), define 5 in(0) = 0 (i.e. the identity,
from now on as in the given span) and 5 out(0) = log(0). Then, for any � ∈ R≥0, called the contrast
sensitivity, let %2 be a �-level-crossing sampler (Definition 3.17) of type R, with input LCntR and output
EvR. Finally, let %3 be the (R,&)-event-based system corresponding to the DDS (Example 3.10) of
input-output type (R,&), & = {−1,1}, with state set ( = R≥0 ×&, consisting of pairs (A, @), readout
5 rdt : (→& defined as 5 rdt(A, @) = @, and update function defined as

5 upd : R×(→ (

(A′, A , @) ↦→
{
(A′,1), A′− A ≥ �
(A′,−1), A′− A ≤ �.

An event-camera pixel for an event camera with contrast sensitivity � is the composite (Defini-
tion 2.12) machine %� = %1 #%2 #%3 with input of type LCntR≥0 and output of type Ev& .

Remark 4.3 (Interpretation). Recalling the working principle of an event camera pixel, the continuous
input of %� represents the light intensities measured by a pixel at a specific time (Equation 2). The
machine %1 computes the log of the intensities, and the �-level-crossing sampler %2 determines when
the changes in intensities are sufficient to generate events. The DDS %3 determines the polarity of the
events, by storing it in the state set together with the brightness of the previously fired event.

We are now ready to define an event camera as a machine, arising from the product of the event
camera pixels (machines) composing it.

Definition 4.4 (Event camera). Let S be a set, elements of which we think of as pixels. For any contrast
sensitivity � ∈ R≥0, define the event camera with S pixels and contrast sensitivity � to be the product
(Definition 3.23)

∏
B∈S %� = (%�)S , where %� is as in Definition 4.2. The input stream of %� is of type

LCnt⊙
B∈SR≥0

and the output stream is of type Ev⊙
B∈S&

.

Remark 4.5. Recall the monoidal structure presented in Remark 3.6. The strong monoidality of Ev
(Proposition 3.7) means that each event of the event camera consists of an event at one or more of its
pixels.

4.2.2 Heading Regulator

Given the body with heading �C , one wants to steer it toward some “goal” heading �, , i.e. one wants to
reach �C+ΔC ∈ [�, − �,�, + �], for some probability 1− �(�). This is achieved by a heading regulator,
which only considers the events measured by the event camera, and takes decisions in real time. To do
so, one needs a function 5 : S → R, called the estimator, which for each event observed on pixel B8 ∈ S
at time C 9 gives an estimate of the current heading of the body �C 9 = 5 (B8). As shown in [3], it is sufficient
to find an 5 such that ∫

S
5 (B)?4(B, C)dB = �C , (3)

in a neighborhood of �, , where ?4(B, C) represents the probability of event 4 being generated at pixel B
at time C.
Remark 4.6. As shown in [3], a possible choice for 5 is

5 : S→ R

B ↦→ 5 (B)B
∫ B+�

B−�
?�(B−E)|∇<E |(B−E)dE,
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where each pixel E contributes with (B − E), weighted by the probability of generating an event (∇<E),
given the probability ?�(B−E) of � being B−E.

The events used to regulate the heading are described through statistics (C ∈ R, which are computed
asynchronously, when an event is observed. Given a function 5 , one can define the heading regulator as
an event-based system.

Note that
⊙

B∈S& � {((, @) | ( ⊆ S non-empty, @ : (→ &}. In fact, the heading regulator will not
use the polarities @, but only the firing sets (. We will follow the style of Example 3.10, but what follows
does not arise from a DDS because we explicitly use the time-stamps.

Definition 4.7 (Heading regulator). Given an event-camera (Definition 4.4), we define an (
⊙

B∈S&,R)
event-based system � = (�, 5 in , 5 out) (the heading regulator) as follows. Let - = R≥0×R and define

�(ℓ )B
{
C1 , . . . , C= , ((1 , @1), . . . , ((= , @=), G1 , . . . , G= | G8 = 5 upd(((8 , @8), C8 , G8−1)

}
,

where {C1 , . . . , C=} ⊆ ℓ̃ , G8 ∈ -, ((8 , @8) ∈
⊙

B∈(&, and

5 upd :
⊙

B∈S&×R≥0×-→ -

(((, @), C , G) ↦→
(
C ,

∑
B8∈(

4−0(C−�1(G))�2(G)−
�
0
5 (dir(B8))

)
,

with 5 satisfying Equation 3, and 0 > 0,� > 0 tunable parameters. Then define 5 rdt(G) = �2(G) and

5 in : �(ℓ ) → Ev⊙
B∈S&

3 ↦→ 5 in(3)B {C1 , . . . , C= , ((1 , @1), . . . , ((= , @=)}, ((8 , @8) ∈
⊙

B∈S&,

and

5 out : �(ℓ ) → EvR
3 ↦→ 5 out(3)B {C1 , . . . , C= , 5 rdt(G1), . . . , 5 rdt(G=)}, G8 ∈ -.

4.2.3 Body Dynamics

For small variations, the body orientation �C ∈ R and its dynamics are expressed through the law

d�C = sat1(D)dC ,

where D ∈ R represents the input received from the controller and

sat1 : R→ R[−1,1]

A ↦→ sat1(A)B


A, if A ∈ [−1, 1],
−1, if A < −1,
1, if A > 1

represents the saturation of the actuators, which receiving a control A ∈ R, are only able to commute it to
an actuation sat1(A) ∈ [−1, 1]. The body dynamics can be written as a machine.
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Definition 4.8 (Body dynamics). Consider a reconstructor (Definition 3.18) %1 of type R with input EvR
and output CntR. Furthermore, consider a continuous dynamical system %2 (Example 2.10) of input-
output type (�1(R), �1(R)), with state space - = R representing the pose of the robot. Then, define the
dynamics as ¤B = sat1(D) and the readout as the identity, i.e. 5 rdt(B) = B. The body dynamics % are given
by the composition (Definition 2.12) of machines %1 #%2. It has input stream of type EvR and output
stream of type LCntR.

Remark 4.9 (Interpretation). The heading regulator produces an event stream of type EvR. However, the
body dynamics are expressed in continuous time and therefore one needs a reconstructor %1. Then, %2
just represents the continuous dynamics.

4.2.4 Observed Scene

Considering the variations in the dynamics, resulting in the current pose �C , one can write the variations
of the light intensities for each pixel B ∈ S with direction dir(B) ∈ S1 as �BC = <(�C + dir(B)), where <
represents the environment reflectance introduced in Section 4.1.

Definition 4.10 (Scene observed by an event-camera pixel). Given a pixel B ∈ S of an event-camera,
let dir(B) be its fixed direction. The scene observed by an event-camera pixel is an (LCntR ,LCntR≥0)
machine

LCntR

LCntR LCntR≥0

5 out

For � ∈ LCntR(ℓ ), define

5 out : LCntR(ℓ ) → LCntR≥0

� ↦→ (�+dir(B)) #<.

Definition 4.11 (Scene observed by an event-camera). Consider an event camera as in Definition 4.4.
The scene observed by each pixel of the camera is a machine % of type (LCntR ,LCntR≥0) (Defini-
tion 4.10). The scene observed by an event camera is the machine given by the product (Definition 3.23)
of machines

∏
B∈S % = %

S .

Note that the output of the machine presented in Definition 4.11 is of the same type of the input of
the machine presented in Definition 4.4. This allows us to close the loop reported in Figure 2 using the
trace (Definition 3.25).

Consider an event camera � (Definition 4.4), a heading regulator � (Definition 4.7), the body dy-
namics � (Definition 4.8), and the scene observed by the event camera $ (Definition 4.11). In order to
take the trace (and have the result be deterministic and total) we compose with a R-type �-delay machine
(Example 2.11) DelR� . Then the trace

TrR(� #$ #� #� #DelR� ),

of the composite machine (Definition 2.12), is the desired closed-loop behavior of the robotic system.
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5 Conclusion and future Work

In this paper, we presented a framework characterized by high descriptive power and formality, and we
showed how event-based systems can be modeled using it. However, the framework does not subsume
the literature presented in Section 1 yet. In particular, we look forward to exploring three extensions.
First, we would like to explicitly introduce a notion of uncertainty, which would allow for a more accurate
description of particular systems. Second, we would like to explore the implications of super-dense time,
mentioned in [12]. Third, we aim at developing tools for the synthesis of event-based systems, using the
internal language of the topos of behaviour types [17], and the mathematical theory of co-design [4].
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